Loading…
Re-Engineering Organocatalysts for Asymmetric Friedel–Crafts Alkylation of Indoles through Computational Studies
The discovery of efficient organocatalysts is generally carried out by thorough experimental screening of different candidates. We recently reported an efficient organocatalyst for iminium-ion-based asymmetric Diels–Alder reactions following a rational design approach. This result encouraged us to t...
Saved in:
Published in: | Journal of organic chemistry 2020-08, Vol.85 (15), p.9969-9978 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The discovery of efficient organocatalysts is generally carried out by thorough experimental screening of different candidates. We recently reported an efficient organocatalyst for iminium-ion-based asymmetric Diels–Alder reactions following a rational design approach. This result encouraged us to test this optimal catalyst in the mechanistically related Friedel–Crafts alkylation of indoles, but to our surprise, almost null enantioselectivity was observed. The results did not significantly improve with structurally related catalysts, and a totally unexpected facial selectivity inversion was also noticed. Using DFT calculations by modeling the competing transition structures with ONIOM, we could unravel the origins of those findings, further employed to predict the most efficient catalyst for this new transformation. The computational results were validated experimentally (up to 92:8 er), providing another successful example of a general strategy to accelerate catalyst development which still remains underexplored. |
---|---|
ISSN: | 0022-3263 1520-6904 |
DOI: | 10.1021/acs.joc.0c01256 |