Loading…

Load Impedance of Immersed Layers on the Quartz Crystal Microbalance: A Comparison with Colloidal Suspensions of Spheres

The analytical theories derived here for the acoustic load impedance measured by a quartz crystal microbalance (QCM), due to the presence of layers of different types (rigid, elastic, and viscous) immersed in a fluid, display generic properties, such as “vanishing mass” and positive frequency shifts...

Full description

Saved in:
Bibliographic Details
Published in:Langmuir 2020-08, Vol.36 (31), p.9225-9234
Main Authors: Meléndez, Marc, Vázquez-Quesada, Adolfo, Delgado-Buscalioni, Rafael
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The analytical theories derived here for the acoustic load impedance measured by a quartz crystal microbalance (QCM), due to the presence of layers of different types (rigid, elastic, and viscous) immersed in a fluid, display generic properties, such as “vanishing mass” and positive frequency shifts, which have been observed in QCM experiments with soft-matter systems. These phenomena seem to contradict the well-known Sauerbrey relation at the heart of many QCM measurements, but here, we show that they arise as a natural consequence of hydrodynamics. We compare our one-dimensional immersed plate theory with three-dimensional simulations of rigid and flexible submicron-sized suspended spheres and with experimental results for adsorbed micron-sized colloids, which yield a “negative acoustic mass”. The parallel behavior unveiled indicates that the QCM response is highly sensitive to hydrodynamics, even for adsorbed colloids. Our conclusions call for a revision of existing theories based on adhesion forces and elastic stiffness at contact, which should, in most cases, include hydrodynamics.
ISSN:0743-7463
1520-5827
DOI:10.1021/acs.langmuir.0c01429