Loading…
Ambient Moisture Accelerates Hydroamination Reactions of Vinylarenes with Alkali‐Metal Amides under Air
A straightforward alkali‐metal‐mediated hydroamination of styrenes using biorenewable 2‐methyltetrahydrofuran as a solvent is reported. Refuting the conventional wisdom of the incompatibility of organolithium reagents with air and moisture, shown here is that the presence of moisture is key in favor...
Saved in:
Published in: | Angewandte Chemie International Edition 2020-10, Vol.59 (43), p.19021-19026 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A straightforward alkali‐metal‐mediated hydroamination of styrenes using biorenewable 2‐methyltetrahydrofuran as a solvent is reported. Refuting the conventional wisdom of the incompatibility of organolithium reagents with air and moisture, shown here is that the presence of moisture is key in favoring formation of the target phenethylamines over competing olefin polymerization products. The method is also compatible with sodium amides, with the latter showing excellent promise as highly efficient catalysts under inert atmosphere conditions.
The nemesis of organo‐alkali‐metal reagents, that is, ambient moisture, can remarkably accelerate the alkali‐metal amide induced hydroamination of styrenes. A practically simple aerobic procedure for these hydroaminations under air and in renewable 2‐methyltetrahydrofuran is revealed. |
---|---|
ISSN: | 1433-7851 1521-3773 |
DOI: | 10.1002/anie.202008512 |