Loading…
Engineering of Coordination Environment and Multiscale Structure in Single-Site Copper Catalyst for Superior Electrocatalytic Oxygen Reduction
Herein, we report efficient single copper atom catalysts that consist of dense atomic Cu sites dispersed on a three-dimensional carbon matrix with highly enhanced mesoporous structures and improved active site accessibility (Cu-SA/NC(meso)). The ratio of +1 to +2 oxidation state of the Cu sites in...
Saved in:
Published in: | Nano letters 2020-08, Vol.20 (8), p.6206-6214 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Herein, we report efficient single copper atom catalysts that consist of dense atomic Cu sites dispersed on a three-dimensional carbon matrix with highly enhanced mesoporous structures and improved active site accessibility (Cu-SA/NC(meso)). The ratio of +1 to +2 oxidation state of the Cu sites in the Cu-SA/NC(meso) catalysts can be controlled by varying the urea content in the adsorption precursor, and the activity for ORR increases with the addition of Cu1+ sites. The optimal Cu1+-SA/NC(meso)-7 catalyst with highly accessible Cu1+ sites exhibits superior ORR activity in alkaline media with a half-wave potential (E 1/2) of 0.898 V vs RHE, significantly exceeding the commercial Pt/C, along with high durability and enhanced methanol tolerance. Control experiments and theoretical calculations demonstrate that the superior ORR catalytic performance of Cu1+-SA/NC(meso)-7 catalyst is attributed to the atomically dispersed Cu1+ sites in catalyzing the reaction and the advantage of the introduced mesoporous structure in enhancing the mass transport. |
---|---|
ISSN: | 1530-6984 1530-6992 |
DOI: | 10.1021/acs.nanolett.0c02677 |