Loading…

Interlimb neural interactions in corticospinal and spinal reflex circuits during preparation and execution of isometric elbow flexion

We found that upper limb muscle contractions facilitated corticospinal circuits controlling lower limb muscles even during motor preparation, whereas motor execution of the task was required to facilitate spinal circuits. We also found that facilitation did not depend on whether contralateral or ips...

Full description

Saved in:
Bibliographic Details
Published in:Journal of neurophysiology 2020-09, Vol.124 (3), p.652-667
Main Authors: Sasaki, Atsushi, Kaneko, Naotsugu, Masugi, Yohei, Milosevic, Matija, Nakazawa, Kimitaka
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We found that upper limb muscle contractions facilitated corticospinal circuits controlling lower limb muscles even during motor preparation, whereas motor execution of the task was required to facilitate spinal circuits. We also found that facilitation did not depend on whether contralateral or ipsilateral hands were contracted or if they were contracted bilaterally. Overall, these findings suggest that training of unaffected upper limbs may be useful to enhance facilitation of affected lower limbs in paraplegic individuals. Although coordinated and simultaneous movement of upper and lower limb muscles is required for activities of daily living, interlimb neural interaction mechanisms and their nature are yet to be fully elucidated. The purpose of this study was to investigate effects of motor preparation and execution of ipsilateral, contralateral, and bilateral upper limb muscle contractions on the excitability of corticospinal and spinal reflex circuits of the lower limb muscles. Fourteen able-bodied individuals were recruited in each study. Experiments were conducted to investigate 1) corticospinal excitability with transcranial magnetic stimulation applied on the primary motor cortex to evoke motor evoked potentials (MEPs) and 2) spinal reflex excitability with transcutaneous spinal cord stimulation applied at the lumbothoracic level to evoke spinal reflexes. Measurements were recorded from multiple right lower limb muscles simultaneously during 1) ipsilateral (right), 2) contralateral (left), and 3) bilateral (right and left) elbow flexion. The results indicate that MEPs in lower limb muscles were facilitated during both preparation and execution of elbow flexion, whereas spinal reflexes were facilitated only during motor execution. Moreover, the extent of facilitation did not differ between right, left, and bilateral contractions. In conclusion, motor preparation for upper limb muscle contractions did not affect spinal circuits but seemed to affect the supraspinal networks controlling lower limb muscles. However, actual contraction (motor execution) of upper limb muscles is required to facilitate spinal reflex circuits controlling the lower limb muscles. Moreover, interlimb remote facilitation in corticospinal and spinal reflex circuits did not depend on whether contralateral or ipsilateral hands were contracted or if they were contracted bilaterally. NEW & NOTEWORTHY We found that upper limb muscle contractions facilitated corticospinal circuits c
ISSN:0022-3077
1522-1598
DOI:10.1152/jn.00705.2019