Loading…

Cell therapy assisted autotransplantation of olfactory tract into the optic nerve: A potential treatment for optic neuropathy

Optic neuropathy is an invaliding pathology with diverse clinical manifestation and varying causes. Current understanding of etiopathological aspects of optical neuropathy does not provide an effective treatment protocol. In this article we discuss existing treatment methods, and their effectiveness...

Full description

Saved in:
Bibliographic Details
Published in:Medical hypotheses 2020-10, Vol.143, p.110104-110104, Article 110104
Main Authors: Shkarubo, A.N., Nikolenko, V.N., Velichko, A.Y., Sinelnikov, M.Y.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Optic neuropathy is an invaliding pathology with diverse clinical manifestation and varying causes. Current understanding of etiopathological aspects of optical neuropathy does not provide an effective treatment protocol. In this article we discuss existing treatment methods, and their effectiveness, evaluated depending on disease etiology. The olfactory tract is a source of olfactory ensheating cells, whose unique properties can have treatment potential in correction of nerve degeneration. Transplantation of an olfactory tract graft into the damaged optic nerve is a technically achievable intervention, though anatomical limitations exist in the proposed surgical access. Optic nerve defects can also be potentially treated with axon growth stimulating therapy (Zymosan and CTP-cAMP). Optic neuropathy can be potentially cured by autotransplantation of a portion of the olfactory tract. Neuroanatomical and histomorphological aspects of olfactory tract autotransplantation into the damaged optic nerve are provided. Feasibility, technical and anatomical features, potential setbacks and limitations are discussed. Anatomical limitations exist, but with current neurosurgical technology can be overcome. Regenerative potential of olfactory tract glial cells plays an important role in nerve restoration and can play a crucial role in further understanding of nerve degeneration treatment.
ISSN:0306-9877
1532-2777
DOI:10.1016/j.mehy.2020.110104