Loading…
Chemically triggered crosslinking with bioorthogonal cyclopropenones
We report a proximity-driven crosslinking strategy featuring bioorthogonal cyclopropenones. These motifs react with phosphines to form electrophilic ketene-ylides. Such intermediates can be trapped by neighboring proteins to form covalent adducts. Successful crosslinking was achieved using a model s...
Saved in:
Published in: | Chemical communications (Cambridge, England) England), 2020-09, Vol.56 (74), p.1883-1886 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We report a proximity-driven crosslinking strategy featuring bioorthogonal cyclopropenones. These motifs react with phosphines to form electrophilic ketene-ylides. Such intermediates can be trapped by neighboring proteins to form covalent adducts. Successful crosslinking was achieved using a model split reporter, and the rate of crosslinking could be tuned using different phosphine triggers. We further demonstrated that the reaction can be performed in cell lysate. Based on these features, we anticipate that cyclopropenones will enable unique studies of protein-protein and other biomolecule interactions.
Bioorthogonal cyclopropenones can be chemically triggered to crosslink interacting biomolecules. |
---|---|
ISSN: | 1359-7345 1364-548X |
DOI: | 10.1039/d0cc04600k |