Loading…

Perturbed Angular Correlation as a Tool to Study Precursors for Radiopharmaceuticals

One of the key components of radiopharmaceuticals for targeting imaging and therapy is a stable bifunctional chelating system to attach radionuclides to selective delivery systems. After-effects of radioactive decay can cause the release of a radioactive isotope from its chelation agent. Perturbed a...

Full description

Saved in:
Bibliographic Details
Published in:Inorganic chemistry 2020-09, Vol.59 (17), p.12209-12217
Main Authors: Kurakina, Elena S, Radchenko, Valery, Belozub, Andrey N, Bonchev, Georgi, Bozhikov, Gospodin A, Velichkov, Atanas I, Stachura, Monika, Karaivanov, Dimitar V, Magomedbekov, Eldar P, Filosofov, Dmitry V
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:One of the key components of radiopharmaceuticals for targeting imaging and therapy is a stable bifunctional chelating system to attach radionuclides to selective delivery systems. After-effects of radioactive decay can cause the release of a radioactive isotope from its chelation agent. Perturbed angular correlation (PAC) of γ-rays has become a unique technique to study the behavior of complexes formed between a chelating agent and radionuclide in vivo (in real time) over a relevant range of concentrations (10–12 M). In the present work, four radionuclides, 111In, 111mCd, and 152, 154Eu, were investigated with diethylenetriaminepentaacetic acid (DTPA) at different pH values to determine the stability constants of the complexes as well as the effects of post-decay processes, which play a major role in determining the suitability of these complexes for application as radiopharmaceuticals (e.g., in vivo generators). The study provides a convenient parameter for the characterization of radionuclide–chelator systems using the PAC method. PAC is proven to be a suitable tool to study novel chelators and radiopharmaceutical precursors attached to radiometals.
ISSN:0020-1669
1520-510X
DOI:10.1021/acs.inorgchem.0c01208