Loading…
The Effect of Solvent–Substrate Noncovalent Interactions on the Diastereoselectivity in the Intramolecular Carbonyl-Ene and the Staudinger [2 + 2] Cycloaddition Reactions
Noncovalent interactions (NCIs) have been identified as important contributing factors for determining selectivity in organic transformations. However, cases where NCIs between solvents and substrates are responsible for a major extent for determining selectivity are rare. The current computational...
Saved in:
Published in: | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2020-10, Vol.124 (39), p.8019-8028 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Noncovalent interactions (NCIs) have been identified as important contributing factors for determining selectivity in organic transformations. However, cases where NCIs between solvents and substrates are responsible for a major extent for determining selectivity are rare. The current computational study with density functional theory identifies two important transformations where this is the case: the intramolecular carbonyl-ene reaction and the Staudinger [2 + 2] cycloaddition reaction. In both cases, the role of explicit solvent molecules interacting noncovalently with the substrate has been taken into account. Calculations indicate that the diastereomeric ratio would be 95.0:5.0 for the formation of tricyclic tetrahydrofuran diastereomers via the intramolecular carbonyl-ene reaction and 94.0:6.0 for the formation of the triflone diastereomers via the Staudinger [2 + 2] cycloaddition reaction, which corroborates with the experiment. Interestingly, in both the cases, the calculations indicate that noninclusion of explicit solvent molecules would lead to only a small difference between the competing transition states, which leads to the conclusion that solvent–substrate NCIs are the major cause for diastereoselectivity in both the cases considered. |
---|---|
ISSN: | 1089-5639 1520-5215 |
DOI: | 10.1021/acs.jpca.0c05738 |