Loading…
The Effect of Muscle Activation on Head Kinematics During Non-injurious Head Impacts in Human Subjects
In this study, twenty volunteers were subjected to three, non-injurious lateral head impacts delivered by a 3.7 kg padded impactor at 2 m/s at varying levels of muscle activation (passive, co-contraction, and unilateral contraction). Electromyography was used to quantify muscle activation conditions...
Saved in:
Published in: | Annals of biomedical engineering 2020-12, Vol.48 (12), p.2751-2762 |
---|---|
Main Authors: | , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this study, twenty volunteers were subjected to three, non-injurious lateral head impacts delivered by a 3.7 kg padded impactor at 2 m/s at varying levels of muscle activation (passive, co-contraction, and unilateral contraction). Electromyography was used to quantify muscle activation conditions, and resulting head kinematics were recorded using a custom-fit instrumented mouthpiece. A multi-modal battery of diagnostic tests (evaluated using neurocognitive, balance, symptomatic, and neuroimaging based assessments) was performed on each subject pre- and post-impact. The passive muscle condition resulted in the largest resultant head linear acceleration (12.1 ± 1.8 g) and angular velocity (7.3 ± 0.5 rad/s). Compared to the passive activation, increasing muscle activation decreased both peak resultant linear acceleration and angular velocity in the co-contracted (12.1 ± 1.5 g, 6.8 ± 0.7 rad/s) case and significantly decreased in the unilateral contraction (10.7 ± 1.7 g, 6.5 ± 0.7 rad/s) case. The duration of angular velocity was decreased with an increase in neck muscle activation. No diagnostic metric showed a statistically or clinically significant alteration between baseline and post-impact assessments, confirming these impacts were non-injurious. This study demonstrated that isometric neck muscle activation prior to impact can reduce resulting head kinematics. This study also provides the data necessary to validate computational models of head impact. |
---|---|
ISSN: | 0090-6964 1573-9686 |
DOI: | 10.1007/s10439-020-02609-7 |