Loading…
Control strategy of stable walking for a hexapod wheel-legged robot
This paper provides a legged stable walking control strategy based on multi-sensor information feedback about BIT-NAZA-II, a large load parallel hexapod wheel-legged robot developing for the problem of vertical contact impact and horizontal sliding of heavy leg robot in complex terrain environments....
Saved in:
Published in: | ISA transactions 2021-02, Vol.108, p.367-380 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper provides a legged stable walking control strategy based on multi-sensor information feedback about BIT-NAZA-II, a large load parallel hexapod wheel-legged robot developing for the problem of vertical contact impact and horizontal sliding of heavy leg robot in complex terrain environments. The BIT-NAZA-II robot has six legs and six wheels, and the wheels are installed on the foot-end. The wheels of each foot-end for the legs of the robot are locked when walking with legs. In order to realize the smooth transition between swing phase and stance phase, the leg motion is divided into different stages for control by state machine switching controller based on event (SMSCE). In the Z-direction, in order to avoid the shaking of the body caused by the contact impact at the moment of contact between the foot-end and the ground during the walking of the robot, an active compliance controller (ACC) based on impedance control (IC) is applied to solve the problem of contact impact. Moreover, in the X-direction, the swing leg retraction (SLR) based on Bezier curve (BC) is introduced to generate the foot-end trajectory of the robot, which solves the slip problem of the heavy leg robot and improves the horizontal stability. Finally, the control strategy of stable walking is respectively verified by the simulations and experiments. The results show that the ACC based on IC can effectively reduce the contact impact between the foot-end and the ground in the Z-direction and improve the stability of body. Besides, the anti-sliding ability is realized after introducing SLR based on BC in the X-direction, and we also verify that stable walking control strategy is effective, which provides a reference value for the stable walking of heavy leg robot in complex terrain.
[Display omitted]
•The control strategy is proposed to solve the problem of stable walking.•SMSCE is designed to solve the control problem between swing phase and stance phase.•ACC based on IC is applied to solve the problem of contact impact.•SLR based on BC is added into the swing phase, which solves the slip problem of leg. |
---|---|
ISSN: | 0019-0578 1879-2022 |
DOI: | 10.1016/j.isatra.2020.08.033 |