Loading…
Gold Nanorod-Based Nanoplatform Catalyzes Constant NO Generation and Protects from Cardiovascular Injury
Cardiovascular disease is a leading cause of death, and one of the effective therapeutic strategies for cardiovascular disease is to provide a controlled, constant supply of nitric oxide (NO) in a mild manner; however, this has proved challenging in the clinic. To address this problem, we built a ni...
Saved in:
Published in: | ACS nano 2020-10, Vol.14 (10), p.12854-12865 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Cardiovascular disease is a leading cause of death, and one of the effective therapeutic strategies for cardiovascular disease is to provide a controlled, constant supply of nitric oxide (NO) in a mild manner; however, this has proved challenging in the clinic. To address this problem, we built a nitric oxide synthase (NOS)-like nanoplatform (NanoNOS) that consists of a noble metal nanoparticle core and a mesoporous silica shell and demonstrated the ability of NanoNOS to catalyze production of NO in vitro. Mechanistic studies show that the catalysis consists of a three-step reaction: the oxidation of NADPH to produce O2 – via oxidase-like activity and the subsequent dismutation of O2 – to H2O2 via SOD-like activity, followed by H2O2-mediated oxidation of l-arginine to produce NO via a nonenzymatic pathway. The generation of NO is precisely regulated by both the content of the NanoNOS species and the plasmon excitation. We found that NanoNOS greatly suppressed injury-driven monocyte–endothelial cell adhesion, suggesting the NanoNOS treatment could help prevent cardiovascular disease. With such a design as well as plasmon excitation that allows for controlled and constant catalytic activity, NanoNOS technology could have a variety of biomedical applications. |
---|---|
ISSN: | 1936-0851 1936-086X |
DOI: | 10.1021/acsnano.0c03629 |