Loading…

The topological properties of magnetic helicity

The relation of magnetic helicity to the topological structure of field lines is discussed. If space is divided into a collection of flux tubes, magnetic helicity arises from internal structure within a flux tube, such as twist and kinking, and external relations between flux tubes, i.e. linking and...

Full description

Saved in:
Bibliographic Details
Published in:Journal of fluid mechanics 1984-10, Vol.147 (1), p.133-148
Main Authors: Berger, Mitchell A., Field, George B.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The relation of magnetic helicity to the topological structure of field lines is discussed. If space is divided into a collection of flux tubes, magnetic helicity arises from internal structure within a flux tube, such as twist and kinking, and external relations between flux tubes, i.e. linking and knotting. The concepts of twist number and writhing number are introduced from the mathematical-biology literature to describe the contributions to helicity from twist about the axis of a flux tube, and from the structure of the axes themselves. There exists no absolute measure of the helicity within a subvolume of space if that subvolume is not bounded by a magnetic surface. However, a topologically meaningful and gauge-invariant relative measure of helicity for such volumes is presented here. The time derivative of this relative measure is calculated, which leads to an expression for the flow of topological structure across boundaries.
ISSN:0022-1120
1469-7645
DOI:10.1017/S0022112084002019