Loading…

A high-performance solid-state electrocaloric cooling system

Current large-scale cooling devices use vapor compression refrigeration. The efficiency of air conditioners has been optimized, but they can be noisy and rely on problematic greenhouse gases. Two groups now present designs for electrocaloric cooling using lead scandium tantalate capacitors that chan...

Full description

Saved in:
Bibliographic Details
Published in:Science (American Association for the Advancement of Science) 2020-10, Vol.370 (6512), p.129-133
Main Authors: Wang, Yunda, Zhang, Ziyang, Usui, Tomoyasu, Benedict, Michael, Hirose, Sakyo, Lee, Joseph, Kalb, Jamie, Schwartz, David
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c368t-83478ff5ca53616ec8e311de9023a2694f7e4105d3a1e10eccf9083668a4e8743
cites cdi_FETCH-LOGICAL-c368t-83478ff5ca53616ec8e311de9023a2694f7e4105d3a1e10eccf9083668a4e8743
container_end_page 133
container_issue 6512
container_start_page 129
container_title Science (American Association for the Advancement of Science)
container_volume 370
creator Wang, Yunda
Zhang, Ziyang
Usui, Tomoyasu
Benedict, Michael
Hirose, Sakyo
Lee, Joseph
Kalb, Jamie
Schwartz, David
description Current large-scale cooling devices use vapor compression refrigeration. The efficiency of air conditioners has been optimized, but they can be noisy and rely on problematic greenhouse gases. Two groups now present designs for electrocaloric cooling using lead scandium tantalate capacitors that change temperature under an electric field. Y. Wang et al. obtained a very large heat flux using only solid materials and a cooling fan to remove heat from their device. Torello et al. used fluids for heat transfer, leading to a very large temperature difference between the hot side and the cold side. The new designs demonstrate the potential for devices that might be competitive with vapor compression–based appliances with further optimization. Science , this issue p. 129 , p. 125 Two designs for electrocaloric cooling suggest that it may be competitive with vapor compression cooling. Electrocaloric (EC) cooling is an emerging technology that has broad potential to disrupt conventional air conditioning and refrigeration as well as electronics cooling applications. EC coolers can be highly efficient, solid state, and compact; have few moving parts; and contain no environmentally harmful or combustible refrigerants. We report a scalable, high-performance system architecture, demonstrated in a device that uses PbSc 0.5 Ta 0.5 O 3 EC multilayer ceramic capacitors fabricated in a manufacturing-compatible process. We obtained a system temperature span of 5.2°C and a maximum heat flux of 135 milliwatts per square centimeter. This measured heat flux is more than four times higher than other EC cooling demonstrations, and the temperature lift is among the highest for EC systems that use ceramic multilayer capacitors.
doi_str_mv 10.1126/science.aba2648
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2448404282</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2448404282</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-83478ff5ca53616ec8e311de9023a2694f7e4105d3a1e10eccf9083668a4e8743</originalsourceid><addsrcrecordid>eNpdkEtLAzEUhYMoWKtrtwNu3KS9eUwmATel-IKCG12HmN60U2YmNZku-u-NtCtXZ3E-DoePkHsGM8a4mmff4uBx5r4dV1JfkAkDU1PDQVySCYBQVENTX5ObnHcApTNiQp4W1bbdbOkeU4ipd2WhyrFr1zSPbsQKO_Rjit51MbW-8rF0w6bKxzxif0uugusy3p1zSr5enj-Xb3T18fq-XKyoF0qPVAvZ6BBq72qhmEKvUTC2RgNclK9GhgYlg3otHEMG6H0woIVS2knUjRRT8nja3af4c8A82r7NHrvODRgP2XIptQTJNS_owz90Fw9pKO_-qMYYKSUr1PxE-RRzThjsPrW9S0fLwP7ZtGeb9mxT_AItl2lH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2447994441</pqid></control><display><type>article</type><title>A high-performance solid-state electrocaloric cooling system</title><source>American Association for the Advancement of Science</source><source>Alma/SFX Local Collection</source><creator>Wang, Yunda ; Zhang, Ziyang ; Usui, Tomoyasu ; Benedict, Michael ; Hirose, Sakyo ; Lee, Joseph ; Kalb, Jamie ; Schwartz, David</creator><creatorcontrib>Wang, Yunda ; Zhang, Ziyang ; Usui, Tomoyasu ; Benedict, Michael ; Hirose, Sakyo ; Lee, Joseph ; Kalb, Jamie ; Schwartz, David</creatorcontrib><description>Current large-scale cooling devices use vapor compression refrigeration. The efficiency of air conditioners has been optimized, but they can be noisy and rely on problematic greenhouse gases. Two groups now present designs for electrocaloric cooling using lead scandium tantalate capacitors that change temperature under an electric field. Y. Wang et al. obtained a very large heat flux using only solid materials and a cooling fan to remove heat from their device. Torello et al. used fluids for heat transfer, leading to a very large temperature difference between the hot side and the cold side. The new designs demonstrate the potential for devices that might be competitive with vapor compression–based appliances with further optimization. Science , this issue p. 129 , p. 125 Two designs for electrocaloric cooling suggest that it may be competitive with vapor compression cooling. Electrocaloric (EC) cooling is an emerging technology that has broad potential to disrupt conventional air conditioning and refrigeration as well as electronics cooling applications. EC coolers can be highly efficient, solid state, and compact; have few moving parts; and contain no environmentally harmful or combustible refrigerants. We report a scalable, high-performance system architecture, demonstrated in a device that uses PbSc 0.5 Ta 0.5 O 3 EC multilayer ceramic capacitors fabricated in a manufacturing-compatible process. We obtained a system temperature span of 5.2°C and a maximum heat flux of 135 milliwatts per square centimeter. This measured heat flux is more than four times higher than other EC cooling demonstrations, and the temperature lift is among the highest for EC systems that use ceramic multilayer capacitors.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.aba2648</identifier><language>eng</language><publisher>Washington: The American Association for the Advancement of Science</publisher><subject>Air conditioners ; Air conditioning ; Capacitors ; Climate Control ; Compression ; Computer architecture ; Coolers ; Cooling ; Cooling systems ; Electric appliances ; Electric fields ; Flammability ; Fluctuations ; Greenhouse effect ; Greenhouse gases ; Heat ; Heat flux ; Heat transfer ; Multilayers ; New technology ; Optimization ; Refrigerants ; Refrigeration ; Scandium ; Solid state ; Temperature gradients ; Vapor compression refrigeration ; Vapors</subject><ispartof>Science (American Association for the Advancement of Science), 2020-10, Vol.370 (6512), p.129-133</ispartof><rights>Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-83478ff5ca53616ec8e311de9023a2694f7e4105d3a1e10eccf9083668a4e8743</citedby><cites>FETCH-LOGICAL-c368t-83478ff5ca53616ec8e311de9023a2694f7e4105d3a1e10eccf9083668a4e8743</cites><orcidid>0000-0001-7073-6169 ; 0000-0002-0911-0957 ; 0000-0003-4090-7806 ; 0000-0001-7374-4754 ; 0000-0001-8627-3437 ; 0000-0003-2400-6047 ; 0000-0002-9945-922X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2884,2885,27924,27925</link.rule.ids></links><search><creatorcontrib>Wang, Yunda</creatorcontrib><creatorcontrib>Zhang, Ziyang</creatorcontrib><creatorcontrib>Usui, Tomoyasu</creatorcontrib><creatorcontrib>Benedict, Michael</creatorcontrib><creatorcontrib>Hirose, Sakyo</creatorcontrib><creatorcontrib>Lee, Joseph</creatorcontrib><creatorcontrib>Kalb, Jamie</creatorcontrib><creatorcontrib>Schwartz, David</creatorcontrib><title>A high-performance solid-state electrocaloric cooling system</title><title>Science (American Association for the Advancement of Science)</title><description>Current large-scale cooling devices use vapor compression refrigeration. The efficiency of air conditioners has been optimized, but they can be noisy and rely on problematic greenhouse gases. Two groups now present designs for electrocaloric cooling using lead scandium tantalate capacitors that change temperature under an electric field. Y. Wang et al. obtained a very large heat flux using only solid materials and a cooling fan to remove heat from their device. Torello et al. used fluids for heat transfer, leading to a very large temperature difference between the hot side and the cold side. The new designs demonstrate the potential for devices that might be competitive with vapor compression–based appliances with further optimization. Science , this issue p. 129 , p. 125 Two designs for electrocaloric cooling suggest that it may be competitive with vapor compression cooling. Electrocaloric (EC) cooling is an emerging technology that has broad potential to disrupt conventional air conditioning and refrigeration as well as electronics cooling applications. EC coolers can be highly efficient, solid state, and compact; have few moving parts; and contain no environmentally harmful or combustible refrigerants. We report a scalable, high-performance system architecture, demonstrated in a device that uses PbSc 0.5 Ta 0.5 O 3 EC multilayer ceramic capacitors fabricated in a manufacturing-compatible process. We obtained a system temperature span of 5.2°C and a maximum heat flux of 135 milliwatts per square centimeter. This measured heat flux is more than four times higher than other EC cooling demonstrations, and the temperature lift is among the highest for EC systems that use ceramic multilayer capacitors.</description><subject>Air conditioners</subject><subject>Air conditioning</subject><subject>Capacitors</subject><subject>Climate Control</subject><subject>Compression</subject><subject>Computer architecture</subject><subject>Coolers</subject><subject>Cooling</subject><subject>Cooling systems</subject><subject>Electric appliances</subject><subject>Electric fields</subject><subject>Flammability</subject><subject>Fluctuations</subject><subject>Greenhouse effect</subject><subject>Greenhouse gases</subject><subject>Heat</subject><subject>Heat flux</subject><subject>Heat transfer</subject><subject>Multilayers</subject><subject>New technology</subject><subject>Optimization</subject><subject>Refrigerants</subject><subject>Refrigeration</subject><subject>Scandium</subject><subject>Solid state</subject><subject>Temperature gradients</subject><subject>Vapor compression refrigeration</subject><subject>Vapors</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpdkEtLAzEUhYMoWKtrtwNu3KS9eUwmATel-IKCG12HmN60U2YmNZku-u-NtCtXZ3E-DoePkHsGM8a4mmff4uBx5r4dV1JfkAkDU1PDQVySCYBQVENTX5ObnHcApTNiQp4W1bbdbOkeU4ipd2WhyrFr1zSPbsQKO_Rjit51MbW-8rF0w6bKxzxif0uugusy3p1zSr5enj-Xb3T18fq-XKyoF0qPVAvZ6BBq72qhmEKvUTC2RgNclK9GhgYlg3otHEMG6H0woIVS2knUjRRT8nja3af4c8A82r7NHrvODRgP2XIptQTJNS_owz90Fw9pKO_-qMYYKSUr1PxE-RRzThjsPrW9S0fLwP7ZtGeb9mxT_AItl2lH</recordid><startdate>20201002</startdate><enddate>20201002</enddate><creator>Wang, Yunda</creator><creator>Zhang, Ziyang</creator><creator>Usui, Tomoyasu</creator><creator>Benedict, Michael</creator><creator>Hirose, Sakyo</creator><creator>Lee, Joseph</creator><creator>Kalb, Jamie</creator><creator>Schwartz, David</creator><general>The American Association for the Advancement of Science</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7073-6169</orcidid><orcidid>https://orcid.org/0000-0002-0911-0957</orcidid><orcidid>https://orcid.org/0000-0003-4090-7806</orcidid><orcidid>https://orcid.org/0000-0001-7374-4754</orcidid><orcidid>https://orcid.org/0000-0001-8627-3437</orcidid><orcidid>https://orcid.org/0000-0003-2400-6047</orcidid><orcidid>https://orcid.org/0000-0002-9945-922X</orcidid></search><sort><creationdate>20201002</creationdate><title>A high-performance solid-state electrocaloric cooling system</title><author>Wang, Yunda ; Zhang, Ziyang ; Usui, Tomoyasu ; Benedict, Michael ; Hirose, Sakyo ; Lee, Joseph ; Kalb, Jamie ; Schwartz, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-83478ff5ca53616ec8e311de9023a2694f7e4105d3a1e10eccf9083668a4e8743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Air conditioners</topic><topic>Air conditioning</topic><topic>Capacitors</topic><topic>Climate Control</topic><topic>Compression</topic><topic>Computer architecture</topic><topic>Coolers</topic><topic>Cooling</topic><topic>Cooling systems</topic><topic>Electric appliances</topic><topic>Electric fields</topic><topic>Flammability</topic><topic>Fluctuations</topic><topic>Greenhouse effect</topic><topic>Greenhouse gases</topic><topic>Heat</topic><topic>Heat flux</topic><topic>Heat transfer</topic><topic>Multilayers</topic><topic>New technology</topic><topic>Optimization</topic><topic>Refrigerants</topic><topic>Refrigeration</topic><topic>Scandium</topic><topic>Solid state</topic><topic>Temperature gradients</topic><topic>Vapor compression refrigeration</topic><topic>Vapors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yunda</creatorcontrib><creatorcontrib>Zhang, Ziyang</creatorcontrib><creatorcontrib>Usui, Tomoyasu</creatorcontrib><creatorcontrib>Benedict, Michael</creatorcontrib><creatorcontrib>Hirose, Sakyo</creatorcontrib><creatorcontrib>Lee, Joseph</creatorcontrib><creatorcontrib>Kalb, Jamie</creatorcontrib><creatorcontrib>Schwartz, David</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yunda</au><au>Zhang, Ziyang</au><au>Usui, Tomoyasu</au><au>Benedict, Michael</au><au>Hirose, Sakyo</au><au>Lee, Joseph</au><au>Kalb, Jamie</au><au>Schwartz, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A high-performance solid-state electrocaloric cooling system</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><date>2020-10-02</date><risdate>2020</risdate><volume>370</volume><issue>6512</issue><spage>129</spage><epage>133</epage><pages>129-133</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><abstract>Current large-scale cooling devices use vapor compression refrigeration. The efficiency of air conditioners has been optimized, but they can be noisy and rely on problematic greenhouse gases. Two groups now present designs for electrocaloric cooling using lead scandium tantalate capacitors that change temperature under an electric field. Y. Wang et al. obtained a very large heat flux using only solid materials and a cooling fan to remove heat from their device. Torello et al. used fluids for heat transfer, leading to a very large temperature difference between the hot side and the cold side. The new designs demonstrate the potential for devices that might be competitive with vapor compression–based appliances with further optimization. Science , this issue p. 129 , p. 125 Two designs for electrocaloric cooling suggest that it may be competitive with vapor compression cooling. Electrocaloric (EC) cooling is an emerging technology that has broad potential to disrupt conventional air conditioning and refrigeration as well as electronics cooling applications. EC coolers can be highly efficient, solid state, and compact; have few moving parts; and contain no environmentally harmful or combustible refrigerants. We report a scalable, high-performance system architecture, demonstrated in a device that uses PbSc 0.5 Ta 0.5 O 3 EC multilayer ceramic capacitors fabricated in a manufacturing-compatible process. We obtained a system temperature span of 5.2°C and a maximum heat flux of 135 milliwatts per square centimeter. This measured heat flux is more than four times higher than other EC cooling demonstrations, and the temperature lift is among the highest for EC systems that use ceramic multilayer capacitors.</abstract><cop>Washington</cop><pub>The American Association for the Advancement of Science</pub><doi>10.1126/science.aba2648</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-7073-6169</orcidid><orcidid>https://orcid.org/0000-0002-0911-0957</orcidid><orcidid>https://orcid.org/0000-0003-4090-7806</orcidid><orcidid>https://orcid.org/0000-0001-7374-4754</orcidid><orcidid>https://orcid.org/0000-0001-8627-3437</orcidid><orcidid>https://orcid.org/0000-0003-2400-6047</orcidid><orcidid>https://orcid.org/0000-0002-9945-922X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2020-10, Vol.370 (6512), p.129-133
issn 0036-8075
1095-9203
language eng
recordid cdi_proquest_miscellaneous_2448404282
source American Association for the Advancement of Science; Alma/SFX Local Collection
subjects Air conditioners
Air conditioning
Capacitors
Climate Control
Compression
Computer architecture
Coolers
Cooling
Cooling systems
Electric appliances
Electric fields
Flammability
Fluctuations
Greenhouse effect
Greenhouse gases
Heat
Heat flux
Heat transfer
Multilayers
New technology
Optimization
Refrigerants
Refrigeration
Scandium
Solid state
Temperature gradients
Vapor compression refrigeration
Vapors
title A high-performance solid-state electrocaloric cooling system
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T21%3A04%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20high-performance%20solid-state%20electrocaloric%20cooling%20system&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Wang,%20Yunda&rft.date=2020-10-02&rft.volume=370&rft.issue=6512&rft.spage=129&rft.epage=133&rft.pages=129-133&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.aba2648&rft_dat=%3Cproquest_cross%3E2448404282%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c368t-83478ff5ca53616ec8e311de9023a2694f7e4105d3a1e10eccf9083668a4e8743%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2447994441&rft_id=info:pmid/&rfr_iscdi=true