Loading…
A high-performance solid-state electrocaloric cooling system
Current large-scale cooling devices use vapor compression refrigeration. The efficiency of air conditioners has been optimized, but they can be noisy and rely on problematic greenhouse gases. Two groups now present designs for electrocaloric cooling using lead scandium tantalate capacitors that chan...
Saved in:
Published in: | Science (American Association for the Advancement of Science) 2020-10, Vol.370 (6512), p.129-133 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c368t-83478ff5ca53616ec8e311de9023a2694f7e4105d3a1e10eccf9083668a4e8743 |
---|---|
cites | cdi_FETCH-LOGICAL-c368t-83478ff5ca53616ec8e311de9023a2694f7e4105d3a1e10eccf9083668a4e8743 |
container_end_page | 133 |
container_issue | 6512 |
container_start_page | 129 |
container_title | Science (American Association for the Advancement of Science) |
container_volume | 370 |
creator | Wang, Yunda Zhang, Ziyang Usui, Tomoyasu Benedict, Michael Hirose, Sakyo Lee, Joseph Kalb, Jamie Schwartz, David |
description | Current large-scale cooling devices use vapor compression refrigeration. The efficiency of air conditioners has been optimized, but they can be noisy and rely on problematic greenhouse gases. Two groups now present designs for electrocaloric cooling using lead scandium tantalate capacitors that change temperature under an electric field. Y. Wang
et al.
obtained a very large heat flux using only solid materials and a cooling fan to remove heat from their device. Torello
et al.
used fluids for heat transfer, leading to a very large temperature difference between the hot side and the cold side. The new designs demonstrate the potential for devices that might be competitive with vapor compression–based appliances with further optimization.
Science
, this issue p.
129
, p.
125
Two designs for electrocaloric cooling suggest that it may be competitive with vapor compression cooling.
Electrocaloric (EC) cooling is an emerging technology that has broad potential to disrupt conventional air conditioning and refrigeration as well as electronics cooling applications. EC coolers can be highly efficient, solid state, and compact; have few moving parts; and contain no environmentally harmful or combustible refrigerants. We report a scalable, high-performance system architecture, demonstrated in a device that uses PbSc
0.5
Ta
0.5
O
3
EC multilayer ceramic capacitors fabricated in a manufacturing-compatible process. We obtained a system temperature span of 5.2°C and a maximum heat flux of 135 milliwatts per square centimeter. This measured heat flux is more than four times higher than other EC cooling demonstrations, and the temperature lift is among the highest for EC systems that use ceramic multilayer capacitors. |
doi_str_mv | 10.1126/science.aba2648 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2448404282</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2448404282</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-83478ff5ca53616ec8e311de9023a2694f7e4105d3a1e10eccf9083668a4e8743</originalsourceid><addsrcrecordid>eNpdkEtLAzEUhYMoWKtrtwNu3KS9eUwmATel-IKCG12HmN60U2YmNZku-u-NtCtXZ3E-DoePkHsGM8a4mmff4uBx5r4dV1JfkAkDU1PDQVySCYBQVENTX5ObnHcApTNiQp4W1bbdbOkeU4ipd2WhyrFr1zSPbsQKO_Rjit51MbW-8rF0w6bKxzxif0uugusy3p1zSr5enj-Xb3T18fq-XKyoF0qPVAvZ6BBq72qhmEKvUTC2RgNclK9GhgYlg3otHEMG6H0woIVS2knUjRRT8nja3af4c8A82r7NHrvODRgP2XIptQTJNS_owz90Fw9pKO_-qMYYKSUr1PxE-RRzThjsPrW9S0fLwP7ZtGeb9mxT_AItl2lH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2447994441</pqid></control><display><type>article</type><title>A high-performance solid-state electrocaloric cooling system</title><source>American Association for the Advancement of Science</source><source>Alma/SFX Local Collection</source><creator>Wang, Yunda ; Zhang, Ziyang ; Usui, Tomoyasu ; Benedict, Michael ; Hirose, Sakyo ; Lee, Joseph ; Kalb, Jamie ; Schwartz, David</creator><creatorcontrib>Wang, Yunda ; Zhang, Ziyang ; Usui, Tomoyasu ; Benedict, Michael ; Hirose, Sakyo ; Lee, Joseph ; Kalb, Jamie ; Schwartz, David</creatorcontrib><description>Current large-scale cooling devices use vapor compression refrigeration. The efficiency of air conditioners has been optimized, but they can be noisy and rely on problematic greenhouse gases. Two groups now present designs for electrocaloric cooling using lead scandium tantalate capacitors that change temperature under an electric field. Y. Wang
et al.
obtained a very large heat flux using only solid materials and a cooling fan to remove heat from their device. Torello
et al.
used fluids for heat transfer, leading to a very large temperature difference between the hot side and the cold side. The new designs demonstrate the potential for devices that might be competitive with vapor compression–based appliances with further optimization.
Science
, this issue p.
129
, p.
125
Two designs for electrocaloric cooling suggest that it may be competitive with vapor compression cooling.
Electrocaloric (EC) cooling is an emerging technology that has broad potential to disrupt conventional air conditioning and refrigeration as well as electronics cooling applications. EC coolers can be highly efficient, solid state, and compact; have few moving parts; and contain no environmentally harmful or combustible refrigerants. We report a scalable, high-performance system architecture, demonstrated in a device that uses PbSc
0.5
Ta
0.5
O
3
EC multilayer ceramic capacitors fabricated in a manufacturing-compatible process. We obtained a system temperature span of 5.2°C and a maximum heat flux of 135 milliwatts per square centimeter. This measured heat flux is more than four times higher than other EC cooling demonstrations, and the temperature lift is among the highest for EC systems that use ceramic multilayer capacitors.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.aba2648</identifier><language>eng</language><publisher>Washington: The American Association for the Advancement of Science</publisher><subject>Air conditioners ; Air conditioning ; Capacitors ; Climate Control ; Compression ; Computer architecture ; Coolers ; Cooling ; Cooling systems ; Electric appliances ; Electric fields ; Flammability ; Fluctuations ; Greenhouse effect ; Greenhouse gases ; Heat ; Heat flux ; Heat transfer ; Multilayers ; New technology ; Optimization ; Refrigerants ; Refrigeration ; Scandium ; Solid state ; Temperature gradients ; Vapor compression refrigeration ; Vapors</subject><ispartof>Science (American Association for the Advancement of Science), 2020-10, Vol.370 (6512), p.129-133</ispartof><rights>Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-83478ff5ca53616ec8e311de9023a2694f7e4105d3a1e10eccf9083668a4e8743</citedby><cites>FETCH-LOGICAL-c368t-83478ff5ca53616ec8e311de9023a2694f7e4105d3a1e10eccf9083668a4e8743</cites><orcidid>0000-0001-7073-6169 ; 0000-0002-0911-0957 ; 0000-0003-4090-7806 ; 0000-0001-7374-4754 ; 0000-0001-8627-3437 ; 0000-0003-2400-6047 ; 0000-0002-9945-922X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2884,2885,27924,27925</link.rule.ids></links><search><creatorcontrib>Wang, Yunda</creatorcontrib><creatorcontrib>Zhang, Ziyang</creatorcontrib><creatorcontrib>Usui, Tomoyasu</creatorcontrib><creatorcontrib>Benedict, Michael</creatorcontrib><creatorcontrib>Hirose, Sakyo</creatorcontrib><creatorcontrib>Lee, Joseph</creatorcontrib><creatorcontrib>Kalb, Jamie</creatorcontrib><creatorcontrib>Schwartz, David</creatorcontrib><title>A high-performance solid-state electrocaloric cooling system</title><title>Science (American Association for the Advancement of Science)</title><description>Current large-scale cooling devices use vapor compression refrigeration. The efficiency of air conditioners has been optimized, but they can be noisy and rely on problematic greenhouse gases. Two groups now present designs for electrocaloric cooling using lead scandium tantalate capacitors that change temperature under an electric field. Y. Wang
et al.
obtained a very large heat flux using only solid materials and a cooling fan to remove heat from their device. Torello
et al.
used fluids for heat transfer, leading to a very large temperature difference between the hot side and the cold side. The new designs demonstrate the potential for devices that might be competitive with vapor compression–based appliances with further optimization.
Science
, this issue p.
129
, p.
125
Two designs for electrocaloric cooling suggest that it may be competitive with vapor compression cooling.
Electrocaloric (EC) cooling is an emerging technology that has broad potential to disrupt conventional air conditioning and refrigeration as well as electronics cooling applications. EC coolers can be highly efficient, solid state, and compact; have few moving parts; and contain no environmentally harmful or combustible refrigerants. We report a scalable, high-performance system architecture, demonstrated in a device that uses PbSc
0.5
Ta
0.5
O
3
EC multilayer ceramic capacitors fabricated in a manufacturing-compatible process. We obtained a system temperature span of 5.2°C and a maximum heat flux of 135 milliwatts per square centimeter. This measured heat flux is more than four times higher than other EC cooling demonstrations, and the temperature lift is among the highest for EC systems that use ceramic multilayer capacitors.</description><subject>Air conditioners</subject><subject>Air conditioning</subject><subject>Capacitors</subject><subject>Climate Control</subject><subject>Compression</subject><subject>Computer architecture</subject><subject>Coolers</subject><subject>Cooling</subject><subject>Cooling systems</subject><subject>Electric appliances</subject><subject>Electric fields</subject><subject>Flammability</subject><subject>Fluctuations</subject><subject>Greenhouse effect</subject><subject>Greenhouse gases</subject><subject>Heat</subject><subject>Heat flux</subject><subject>Heat transfer</subject><subject>Multilayers</subject><subject>New technology</subject><subject>Optimization</subject><subject>Refrigerants</subject><subject>Refrigeration</subject><subject>Scandium</subject><subject>Solid state</subject><subject>Temperature gradients</subject><subject>Vapor compression refrigeration</subject><subject>Vapors</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpdkEtLAzEUhYMoWKtrtwNu3KS9eUwmATel-IKCG12HmN60U2YmNZku-u-NtCtXZ3E-DoePkHsGM8a4mmff4uBx5r4dV1JfkAkDU1PDQVySCYBQVENTX5ObnHcApTNiQp4W1bbdbOkeU4ipd2WhyrFr1zSPbsQKO_Rjit51MbW-8rF0w6bKxzxif0uugusy3p1zSr5enj-Xb3T18fq-XKyoF0qPVAvZ6BBq72qhmEKvUTC2RgNclK9GhgYlg3otHEMG6H0woIVS2knUjRRT8nja3af4c8A82r7NHrvODRgP2XIptQTJNS_owz90Fw9pKO_-qMYYKSUr1PxE-RRzThjsPrW9S0fLwP7ZtGeb9mxT_AItl2lH</recordid><startdate>20201002</startdate><enddate>20201002</enddate><creator>Wang, Yunda</creator><creator>Zhang, Ziyang</creator><creator>Usui, Tomoyasu</creator><creator>Benedict, Michael</creator><creator>Hirose, Sakyo</creator><creator>Lee, Joseph</creator><creator>Kalb, Jamie</creator><creator>Schwartz, David</creator><general>The American Association for the Advancement of Science</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7073-6169</orcidid><orcidid>https://orcid.org/0000-0002-0911-0957</orcidid><orcidid>https://orcid.org/0000-0003-4090-7806</orcidid><orcidid>https://orcid.org/0000-0001-7374-4754</orcidid><orcidid>https://orcid.org/0000-0001-8627-3437</orcidid><orcidid>https://orcid.org/0000-0003-2400-6047</orcidid><orcidid>https://orcid.org/0000-0002-9945-922X</orcidid></search><sort><creationdate>20201002</creationdate><title>A high-performance solid-state electrocaloric cooling system</title><author>Wang, Yunda ; Zhang, Ziyang ; Usui, Tomoyasu ; Benedict, Michael ; Hirose, Sakyo ; Lee, Joseph ; Kalb, Jamie ; Schwartz, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-83478ff5ca53616ec8e311de9023a2694f7e4105d3a1e10eccf9083668a4e8743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Air conditioners</topic><topic>Air conditioning</topic><topic>Capacitors</topic><topic>Climate Control</topic><topic>Compression</topic><topic>Computer architecture</topic><topic>Coolers</topic><topic>Cooling</topic><topic>Cooling systems</topic><topic>Electric appliances</topic><topic>Electric fields</topic><topic>Flammability</topic><topic>Fluctuations</topic><topic>Greenhouse effect</topic><topic>Greenhouse gases</topic><topic>Heat</topic><topic>Heat flux</topic><topic>Heat transfer</topic><topic>Multilayers</topic><topic>New technology</topic><topic>Optimization</topic><topic>Refrigerants</topic><topic>Refrigeration</topic><topic>Scandium</topic><topic>Solid state</topic><topic>Temperature gradients</topic><topic>Vapor compression refrigeration</topic><topic>Vapors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yunda</creatorcontrib><creatorcontrib>Zhang, Ziyang</creatorcontrib><creatorcontrib>Usui, Tomoyasu</creatorcontrib><creatorcontrib>Benedict, Michael</creatorcontrib><creatorcontrib>Hirose, Sakyo</creatorcontrib><creatorcontrib>Lee, Joseph</creatorcontrib><creatorcontrib>Kalb, Jamie</creatorcontrib><creatorcontrib>Schwartz, David</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yunda</au><au>Zhang, Ziyang</au><au>Usui, Tomoyasu</au><au>Benedict, Michael</au><au>Hirose, Sakyo</au><au>Lee, Joseph</au><au>Kalb, Jamie</au><au>Schwartz, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A high-performance solid-state electrocaloric cooling system</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><date>2020-10-02</date><risdate>2020</risdate><volume>370</volume><issue>6512</issue><spage>129</spage><epage>133</epage><pages>129-133</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><abstract>Current large-scale cooling devices use vapor compression refrigeration. The efficiency of air conditioners has been optimized, but they can be noisy and rely on problematic greenhouse gases. Two groups now present designs for electrocaloric cooling using lead scandium tantalate capacitors that change temperature under an electric field. Y. Wang
et al.
obtained a very large heat flux using only solid materials and a cooling fan to remove heat from their device. Torello
et al.
used fluids for heat transfer, leading to a very large temperature difference between the hot side and the cold side. The new designs demonstrate the potential for devices that might be competitive with vapor compression–based appliances with further optimization.
Science
, this issue p.
129
, p.
125
Two designs for electrocaloric cooling suggest that it may be competitive with vapor compression cooling.
Electrocaloric (EC) cooling is an emerging technology that has broad potential to disrupt conventional air conditioning and refrigeration as well as electronics cooling applications. EC coolers can be highly efficient, solid state, and compact; have few moving parts; and contain no environmentally harmful or combustible refrigerants. We report a scalable, high-performance system architecture, demonstrated in a device that uses PbSc
0.5
Ta
0.5
O
3
EC multilayer ceramic capacitors fabricated in a manufacturing-compatible process. We obtained a system temperature span of 5.2°C and a maximum heat flux of 135 milliwatts per square centimeter. This measured heat flux is more than four times higher than other EC cooling demonstrations, and the temperature lift is among the highest for EC systems that use ceramic multilayer capacitors.</abstract><cop>Washington</cop><pub>The American Association for the Advancement of Science</pub><doi>10.1126/science.aba2648</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-7073-6169</orcidid><orcidid>https://orcid.org/0000-0002-0911-0957</orcidid><orcidid>https://orcid.org/0000-0003-4090-7806</orcidid><orcidid>https://orcid.org/0000-0001-7374-4754</orcidid><orcidid>https://orcid.org/0000-0001-8627-3437</orcidid><orcidid>https://orcid.org/0000-0003-2400-6047</orcidid><orcidid>https://orcid.org/0000-0002-9945-922X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-8075 |
ispartof | Science (American Association for the Advancement of Science), 2020-10, Vol.370 (6512), p.129-133 |
issn | 0036-8075 1095-9203 |
language | eng |
recordid | cdi_proquest_miscellaneous_2448404282 |
source | American Association for the Advancement of Science; Alma/SFX Local Collection |
subjects | Air conditioners Air conditioning Capacitors Climate Control Compression Computer architecture Coolers Cooling Cooling systems Electric appliances Electric fields Flammability Fluctuations Greenhouse effect Greenhouse gases Heat Heat flux Heat transfer Multilayers New technology Optimization Refrigerants Refrigeration Scandium Solid state Temperature gradients Vapor compression refrigeration Vapors |
title | A high-performance solid-state electrocaloric cooling system |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T21%3A04%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20high-performance%20solid-state%20electrocaloric%20cooling%20system&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Wang,%20Yunda&rft.date=2020-10-02&rft.volume=370&rft.issue=6512&rft.spage=129&rft.epage=133&rft.pages=129-133&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.aba2648&rft_dat=%3Cproquest_cross%3E2448404282%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c368t-83478ff5ca53616ec8e311de9023a2694f7e4105d3a1e10eccf9083668a4e8743%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2447994441&rft_id=info:pmid/&rfr_iscdi=true |