Loading…
Quantum State Interferography
Quantum state tomography (QST) has been the traditional method for characterization of an unknown state. Recently, many direct measurement methods have been implemented to reconstruct the state in a resource efficient way. In this Letter, we present an interferometric method, in which any qubit stat...
Saved in:
Published in: | Physical review letters 2020-09, Vol.125 (12), p.1-123601, Article 123601 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Quantum state tomography (QST) has been the traditional method for characterization of an unknown state. Recently, many direct measurement methods have been implemented to reconstruct the state in a resource efficient way. In this Letter, we present an interferometric method, in which any qubit state, whether mixed or pure, can be inferred from the visibility, phase shift, and average intensity of an interference pattern using a single-shot measurement-hence, we call it quantum state interferography. This provides us with a "black box" approach to quantum state estimation, wherein, between the incidence of the photon and extraction of state information, we are not changing any conditions within the setup, thus giving us a true single shot estimation of the quantum state. In contrast, standard QST requires at least two measurements for pure state qubit and at least three measurements for mixed state qubit reconstruction. We then go on to show that QSI is more resource efficient than QST for quantification of entanglement in pure bipartite qubits. We experimentally implement our method with high fidelity using the polarization degree of freedom of light. An extension of the scheme to pure states involving d − 1 interferograms for d-dimensional systems is also presented. Thus, the scaling gain is even more dramatic in the qudit scenario for our method, where, in contrast, standard QST, without any assumptions, scales roughly as d2 . |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/PhysRevLett.125.123601 |