Loading…
Electro-inductive effect: Electrodes as functional groups with tunable electronic properties
In organic chemistry, reaction rates are often sensitive to substituents that either donate or withdraw electron density from a reactive carbon center. Heo et al. now report that when reactants are tethered to an electrode, the polarization effect of an applied potential can exert an analogous influ...
Saved in:
Published in: | Science (American Association for the Advancement of Science) 2020-10, Vol.370 (6513), p.214-219 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In organic chemistry, reaction rates are often sensitive to substituents that either donate or withdraw electron density from a reactive carbon center. Heo
et al.
now report that when reactants are tethered to an electrode, the polarization effect of an applied potential can exert an analogous influence, essentially acting as a tunable functional group. The authors demonstrate rate modulations in ester hydrolysis and arene cross-coupling, as well as a two-step acid-to-amide conversion that benefits from inversion of the polarization midway through the reaction.
Science
, this issue p.
214
Polarizing organic molecules bound to an electrode surface can tune their reactivity.
In place of functional groups that impose different inductive effects, we immobilize molecules carrying thiol groups on a gold electrode. By applying different voltages, the properties of the immobilized molecules can be tuned. The base-catalyzed saponification of benzoic esters is fully inhibited by applying a mildly negative voltage of –0.25 volt versus open circuit potential. Furthermore, the rate of a Suzuki-Miyaura cross-coupling reaction can be changed by applying a voltage when the arylhalide substrate is immobilized on a gold electrode. Finally, a two-step carboxylic acid amidation is shown to benefit from a switch in applied voltage between addition of a carbodiimide coupling reagent and introduction of the amine. |
---|---|
ISSN: | 0036-8075 1095-9203 |
DOI: | 10.1126/science.abb6375 |