Loading…

Multiparametric Highly Sensitive Chemiluminescence Immunoassay for Quantification of β‑Lactam-Specific Immunoglobulin E

β-lactams (BLCs) are the most widely used antibiotics and consequently the most common cause of drug allergy in the world. The diagnosis of drug allergy is complex and represents a serious challenge that includes a wide variety of methods. In vitro tests are based on the immunological determination...

Full description

Saved in:
Bibliographic Details
Published in:Analytical chemistry (Washington) 2020-11, Vol.92 (21), p.14608-14615
Main Authors: Quintero-Campos, Pedro, Juárez, María José, Morais, Sergi, Maquieira, Ángel
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:β-lactams (BLCs) are the most widely used antibiotics and consequently the most common cause of drug allergy in the world. The diagnosis of drug allergy is complex and represents a serious challenge that includes a wide variety of methods. In vitro tests are based on the immunological determination of allergen-specific IgE, but the tests in the market lack the required sensitivity and specificity. In addition, the large sample volume, long incubation times, and single-plex configuration have brought their use into question to complement the clinical information. Here, we report a chemiluminescence immunoassay (CLIA) for multiparametric quantification of specific IgE to penicillin G, penicillin V, amoxicillin, and piperacillin, using histone H1 as a carrier. The developed CLIA allowed the determination of BLC-specific IgE below 0.1 IU/mL, thus allowing identification of allergic patients with better sensitivity, using only 25 μL of a sample (serum). The immunoassay was successfully applied in a cohort of 140 human serum samples, showing good sensitivity (64.6%) as well as specificity (100%), which significantly improve the predictive character of existing BLC-allergy in vitro tests.
ISSN:0003-2700
1520-6882
DOI:10.1021/acs.analchem.0c03020