Loading…
Biosynthesis of AgNPs onto the urea-based periodic mesoporous organosilica (AgxNPs/Ur-PMO) for antibacterial and cell viability assay
[Display omitted] Nano-size silver particles were stabilized on the inner surfaces of urea based periodic mesoporous organosilica (Ur-PMO). Aqueous extract of Euphorbia leaves as a sustainable and green reducing agent was applied for Ag-nanoparticles growth into the Ur-PMO channels. Physical and che...
Saved in:
Published in: | Journal of colloid and interface science 2021-03, Vol.585, p.676-683 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | [Display omitted]
Nano-size silver particles were stabilized on the inner surfaces of urea based periodic mesoporous organosilica (Ur-PMO). Aqueous extract of Euphorbia leaves as a sustainable and green reducing agent was applied for Ag-nanoparticles growth into the Ur-PMO channels. Physical and chemical properties of organosilica materials synthesized using various techniques such as FT-IR, small-angle XRD, PXRD, FESEM, TEM, SEM-EDX and atomic absorption spectrometry (AAS) were examined. Finally, the AgNPs/Ur-PMO were investigated on cell viability assay. An in vitro cytotoxicity test using MMT assay displayed that the designed material has good biocompatibility and could be a promising candidate for biomedical applications. The results also showed that the AgNPs/Ur-PMO compounds (especially, PMO; 1.27% AgNPs) had relatively good antibacterial and antibiofilm effects. It seems that the use of these compounds in hospital environments can reduce nosocomial infections as well as reduce antibiotic-resistant bacteria. |
---|---|
ISSN: | 0021-9797 1095-7103 |
DOI: | 10.1016/j.jcis.2020.10.047 |