Loading…
Whole-Brain Dynamics in Aging: Disruptions in Functional Connectivity and the Role of the Rich Club
Abstract Normal aging causes disruptions in the brain that can lead to cognitive decline. Resting-state functional magnetic resonance imaging studies have found significant age-related alterations in functional connectivity across various networks. Nevertheless, most of the studies have focused main...
Saved in:
Published in: | Cerebral cortex (New York, N.Y. 1991) N.Y. 1991), 2021-03, Vol.31 (5), p.2466-2481 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract
Normal aging causes disruptions in the brain that can lead to cognitive decline. Resting-state functional magnetic resonance imaging studies have found significant age-related alterations in functional connectivity across various networks. Nevertheless, most of the studies have focused mainly on static functional connectivity. Studying the dynamics of resting-state brain activity across the whole-brain functional network can provide a better characterization of age-related changes. Here, we employed two data-driven whole-brain approaches based on the phase synchronization of blood-oxygen-level-dependent signals to analyze resting-state fMRI data from 620 subjects divided into two groups (middle-age group (n = 310); age range, 50–64 years versus older group (n = 310); age range, 65–91 years). Applying the intrinsic-ignition framework to assess the effect of spontaneous local activation events on local–global integration, we found that the older group showed higher intrinsic ignition across the whole-brain functional network, but lower metastability. Using Leading Eigenvector Dynamics Analysis, we found that the older group showed reduced ability to access a metastable substate that closely overlaps with the so-called rich club. These findings suggest that functional whole-brain dynamics are altered in aging, probably due to a deficiency in a metastable substate that is key for efficient global communication in the brain. |
---|---|
ISSN: | 1047-3211 1460-2199 |
DOI: | 10.1093/cercor/bhaa367 |