Loading…
Theory of dynamic permeability and tortuosity in fluid-saturated porous media
We consider the response of a Newtonian fluid, saturating the pore space of a rigid isotropic porous medium, subjected to an infinitesimal oscillatory pressure gradient across the sample. We derive the analytic properties of the linear response function as well as the high- and low-frequency limits....
Saved in:
Published in: | Journal of fluid mechanics 1987-03, Vol.176 (1), p.379-402 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We consider the response of a Newtonian fluid, saturating the pore space of a rigid isotropic porous medium, subjected to an infinitesimal oscillatory pressure gradient across the sample. We derive the analytic properties of the linear response function as well as the high- and low-frequency limits. In so doing we present a new and well-defined parameter Λ, which enters the high-frequency limit, characteristic of dynamically connected pore sizes. Using these results we construct a simple model for the response in terms of the exact high- and low-frequency parameters; the model is very successful when compared with direct numerical simulations on large lattices with randomly varying tube radii. We demonstrate the relevance of these results to the acoustic properties of non-rigid porous media, and we show how the dynamic permeability/tortuosity can be measured using superfluid 4He as the pore fluid. We derive the expected response in the case that the internal walls of the pore space are fractal in character. |
---|---|
ISSN: | 0022-1120 1469-7645 |
DOI: | 10.1017/S0022112087000727 |