Loading…

Chirality-Induced Phonon Dispersion in a Noncentrosymmetric Micropolar Crystal

Features of the phonon spectrum of a chiral crystal are examined within the micropolar elasticity theory. This formalism accounts for not only translational micromotions of a medium but also rotational ones. It is found that there appears the phonon band splitting depending on the left- and right-ci...

Full description

Saved in:
Bibliographic Details
Published in:Physical review letters 2020-12, Vol.125 (24), p.245302-245302, Article 245302
Main Authors: Kishine, J, Ovchinnikov, A S, Tereshchenko, A A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Features of the phonon spectrum of a chiral crystal are examined within the micropolar elasticity theory. This formalism accounts for not only translational micromotions of a medium but also rotational ones. It is found that there appears the phonon band splitting depending on the left- and right-circular polarization in a purely phonon sector without invoking any outside subsystem. The phonon spectrum reveals parity breaking while preserving time-reversal symmetry, i.e., it possesses true chirality. We find that hybridization of the microrotational and translational modes gives rise to the acoustic phonon branch with a "roton" minimum reminiscent of the elementary excitations in the superfluid helium-4. We argue that a mechanism of this phenomena is in line with Nozières' reinterpretation P. Nozières, [J. Low Temp. Phys. 137, 45 (2004)JLTPAC0022-229110.1023/B:JOLT.0000044234.82957.2f] of the rotons as a manifestation of an incipient crystallization instability. We discuss a close analogy between the translational and rotational micromotions in the micropolar elastic medium and the Bogoliubov quasiparticles and gapful density fluctuations in ^{4}He.
ISSN:0031-9007
1079-7114
DOI:10.1103/PhysRevLett.125.245302