Loading…
Vegetation spatial variability and its effect on vegetation indices
Landsat MSS data were used to simulate low resolution satellite data, such as NOAA AVHRR, to quantify the fractional vegetation cover within a pixel and relate the fractional cover to the normalized difference vegetation index (NDVI) and the simple ratio (SR). The MSS data were converted to radiance...
Saved in:
Published in: | International journal of remote sensing 1987-09, Vol.8 (9), p.1301-1306 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Landsat MSS data were used to simulate low resolution satellite data, such as NOAA AVHRR, to quantify the fractional vegetation cover within a pixel and relate the fractional cover to the normalized difference vegetation index (NDVI) and the simple ratio (SR). The MSS data were converted to radiances from which the NDVI and SR values for the simulated pixels were determined. Each simulated pixel was divided into clusters using an unsupervised classification programme. Spatial and spectral analysis provided a means of combining clusters representing similar surface characteristics into vegetated and non-vegetated areas. Analysis showed an average error of 12·7 per cent in determining these areas. NDVI values less than 0·3 represented fractional vegetated areas of 5 per cent or less, while a value of 0·7 or higher represented fractional vegetated areas greater than 80 per cent. Regression analysis showed a strong linear relation between fractional vegetation area and the NDVI and SR values; correlation values were 0·89 and 0·95 respectively. The range of NDVI values calculated from the MSS data agrees well with field studies. |
---|---|
ISSN: | 0143-1161 1366-5901 |
DOI: | 10.1080/01431168708954775 |