Loading…
Cyclopeptides from the Mushroom Pathogen Fungus Cladobotryum varium
Three new cyclopeptides with serial Phe residues were identified with the aid of HPLC-DAD analysis, from the culture broth of Cladobotryum varium, a fungal pathogen causing mushroom cobweb disease. Cladoamides A (1) and B (2) have two consecutive N-methylphenylalanine units in the destruxin class cy...
Saved in:
Published in: | Journal of natural products (Washington, D.C.) D.C.), 2021-02, Vol.84 (2), p.327-338 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Three new cyclopeptides with serial Phe residues were identified with the aid of HPLC-DAD analysis, from the culture broth of Cladobotryum varium, a fungal pathogen causing mushroom cobweb disease. Cladoamides A (1) and B (2) have two consecutive N-methylphenylalanine units in the destruxin class cyclic depsipentapeptide framework, while cladoamide C (3) has a three consecutive Phe motif in a cyclopentapeptide structure. Of these three cyclopeptides, 1 showed potent autophagy-inducing activity at 10 μg/mL, comparable to a positive control, rapamycin. For the determination of the absolute configurations of the Ile residues in 1 and 3, new conditions for separating Ile and allo-Ile, using a pentafluorophenyl-bonded solid phase and methanolic solvent, were established within the analytical scheme of the advanced Marfey’s method, thus offering a convenient alternative to the C3 Marfey’s method, which requires elution with a three-solvent mixture. The sequence of two d-Phe and one l-Phe in 3 was determined through NMR chemical shift prediction by DFT-based calculations and chemical synthesis, which demonstrated the significance of noncovalent interactions in the accurate calculation of stable conformers for peptides with multiple aromatic rings. |
---|---|
ISSN: | 0163-3864 1520-6025 |
DOI: | 10.1021/acs.jnatprod.0c00980 |