Loading…
Biomimetic sulfated glycosaminoglycans maintain differentiation markers of breast epithelial cells and preferentially inhibit proliferation of cancer cells
Glycosaminoglycans (GAG) are key elements involved in various physiological and pathological processes including cancer. Several GAG-based drugs have been developed showing significant results and potential use as cancer therapeutics. We previously reported that alginate sulfate (AlgSulf), a GAG-mim...
Saved in:
Published in: | Acta biomaterialia 2021-03, Vol.122, p.186-198 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Glycosaminoglycans (GAG) are key elements involved in various physiological and pathological processes including cancer. Several GAG-based drugs have been developed showing significant results and potential use as cancer therapeutics. We previously reported that alginate sulfate (AlgSulf), a GAG-mimetic, reduces the proliferation of lung adenocarcinoma cells. In this study, we evaluated the preferential effect of AlgSulf on tumorigenic and nontumorigenic mammary epithelial cells in 2D, 3D, and coculture conditions. AlgSulf were synthesized with different degrees of sulfation (DSs) varying from 0 to 2.7 and used at 100 µg/mL on HMT-3522 S1 (S1) nontumorigenic mammary epithelial cells and their tumorigenic counterparts HMT-3522 T4–2 (T4–2) cells. The anti-tumor properties of AlgSulf were assessed using trypan blue and bromodeoxyuridine proliferation (BrdU) assays, immunofluorescence staining and transwell invasion assay. Binding of insulin and epidermal growth factor (EGF) to sulfated substrates was measured using QCM-D and ELISA. In 2D, the cell growth rate of cells treated with AlgSulf was consistently lower compared to untreated controls (p |
---|---|
ISSN: | 1742-7061 1878-7568 |
DOI: | 10.1016/j.actbio.2020.12.049 |