Loading…
Transient elevation of triacylglycerol content in the liver: a fundamental component of the acute response to exercise
Exercise is well appreciated as a therapeutic approach to improve health. Although chronic exercise training can change metabolism, even a single exercise session can have significant effects upon metabolism. Responses of adipose tissue lipolysis and skeletal muscle triacylglycerol (TAG) utilization...
Saved in:
Published in: | Journal of applied physiology (1985) 2021-04, Vol.130 (4), p.1293-1303 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Exercise is well appreciated as a therapeutic approach to improve health. Although chronic exercise training can change metabolism, even a single exercise session can have significant effects upon metabolism. Responses of adipose tissue lipolysis and skeletal muscle triacylglycerol (TAG) utilization have been well appreciated as components of the acute exercise response. However, there are other central components of the physiological response to be considered, as well. A robust and growing body of literature depicts a rapid responsiveness of hepatic TAG content to single bouts of exercise, and there is a remaining need to incorporate this information into our overall understanding of how exercise affects the liver. TAG content in the liver increases during an exercise session and can continue to rise for a few hours afterwards, followed by a fairly rapid return to baseline. Here, we summarize evidence that rapid responsiveness of hepatic TAG content to metabolic stress is a fundamental component of the exercise response. Adipose tissue lipolysis and plasma free fatty acid concentration are likely the major metabolic controllers of enhanced lipid storage in the liver after each exercise bout, and we discuss nutritional impacts as well as health implications. Although traditionally clinicians would be merely concerned with hepatic lipids in overnight-fasted, rested individuals, it is now apparent that the content of hepatic TAG fluctuates in response to metabolic challenges such as exercise, and these responses likely exert significant impacts on health and cellular homeostasis. |
---|---|
ISSN: | 8750-7587 1522-1601 |
DOI: | 10.1152/japplphysiol.00930.2020 |