Loading…
Effects of calcium-activated potassium channel modulators on afterhyperpolarizing potentials in identified motor and mechanosensory neurons of the medicinal leech
Calcium-activated potassium (K Ca ) channels contribute to multiple neuronal properties including spike frequency and afterhyperpolarizing potentials (AHPs). K Ca channels are classified as K Ca 1.1, K Ca 2, or K Ca 3.1 based on single-channel conductance and pharmacology. Ca 2+ -dependent AHPs in v...
Saved in:
Published in: | Journal of Comparative Physiology 2021, Vol.207 (1), p.69-85 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c375t-44f844a0a8b7785a822e6a813a50f76020234fa5b105686bc0749bc28dd80433 |
---|---|
cites | cdi_FETCH-LOGICAL-c375t-44f844a0a8b7785a822e6a813a50f76020234fa5b105686bc0749bc28dd80433 |
container_end_page | 85 |
container_issue | 1 |
container_start_page | 69 |
container_title | Journal of Comparative Physiology |
container_volume | 207 |
creator | Angstadt, James D. Rebel, Matthew I. Connolly, Megan K. |
description | Calcium-activated potassium (K
Ca
) channels contribute to multiple neuronal properties including spike frequency and afterhyperpolarizing potentials (AHPs). K
Ca
channels are classified as K
Ca
1.1, K
Ca
2, or K
Ca
3.1 based on single-channel conductance and pharmacology. Ca
2+
-dependent AHPs in vertebrates are categorized as fast, medium, or slow. Fast and medium AHPs are generated by K
Ca
1.1 and K
Ca
2 channels, respectively. The K
Ca
subtype responsible for slow AHPs is unclear. Prolonged, Ca
2+
-dependent AHPs have been described in several leech neurons. Unfortunately, apamin and other K
Ca
blockers often prove ineffective in the leech. An alternative approach is to utilize K
Ca
modulators, which alter channel sensitivity to Ca
2+
. Vertebrate K
Ca
2 channels are targeted selectively by the positive modulator CyPPA and the negative modulator NS8593. Here we show that AHPs in identified motor and mechanosensory leech neurons are enhanced by CyPPA and suppressed by NS8593. Our results indicate that K
Ca
2 channels underlie prolonged AHPs in these neurons and suggest that K
Ca
2 modulators may serve as effective tools to explore the role of K
Ca
channels in leech physiology. |
doi_str_mv | 10.1007/s00359-021-01462-w |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2480436496</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2488029040</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-44f844a0a8b7785a822e6a813a50f76020234fa5b105686bc0749bc28dd80433</originalsourceid><addsrcrecordid>eNp9kc1u1TAQhS0EoreFF2CBLLFhExj_JHGWqCoUqRKb7qOJY_e6SuxgO1S3j8OT4txbQGLBymPPd45Hcwh5w-ADA2g_JgBRdxVwVgGTDa8enpEdk4JXTNTsOdmBkFC1dSfPyHlK9wAF5ewlORNCKqGE2JGfV9YanRMNlmqctFvnCnV2PzCbkS4hY0rljeo9em8mOodxnTCHWBSeos0m7g-LiUuYMLpH5-82kfHZ4ZSo89SN28W64jaHoqPoS2U2v5CMTyEeqDdrDP44Q96b0h2ddh4nOpkCviIvbDEzr5_OC3L7-er28rq6-fbl6-Wnm0qLts6VlFZJiYBqaFtVo-LcNKiYwBps2wAHLqTFemBQN6oZNLSyGzRX46hACnFB3p9slxi-ryblfnZJm2lCb8Kaei43rJFdU9B3_6D3YY1l4COlgHcgoVD8ROkYUorG9kt0M8ZDz6DfAuxPAfYllf4YYP9QRG-frNeh7OGP5HdiBRAnIJWWvzPx79__sf0FyNGp-A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2488029040</pqid></control><display><type>article</type><title>Effects of calcium-activated potassium channel modulators on afterhyperpolarizing potentials in identified motor and mechanosensory neurons of the medicinal leech</title><source>Springer Nature</source><creator>Angstadt, James D. ; Rebel, Matthew I. ; Connolly, Megan K.</creator><creatorcontrib>Angstadt, James D. ; Rebel, Matthew I. ; Connolly, Megan K.</creatorcontrib><description>Calcium-activated potassium (K
Ca
) channels contribute to multiple neuronal properties including spike frequency and afterhyperpolarizing potentials (AHPs). K
Ca
channels are classified as K
Ca
1.1, K
Ca
2, or K
Ca
3.1 based on single-channel conductance and pharmacology. Ca
2+
-dependent AHPs in vertebrates are categorized as fast, medium, or slow. Fast and medium AHPs are generated by K
Ca
1.1 and K
Ca
2 channels, respectively. The K
Ca
subtype responsible for slow AHPs is unclear. Prolonged, Ca
2+
-dependent AHPs have been described in several leech neurons. Unfortunately, apamin and other K
Ca
blockers often prove ineffective in the leech. An alternative approach is to utilize K
Ca
modulators, which alter channel sensitivity to Ca
2+
. Vertebrate K
Ca
2 channels are targeted selectively by the positive modulator CyPPA and the negative modulator NS8593. Here we show that AHPs in identified motor and mechanosensory leech neurons are enhanced by CyPPA and suppressed by NS8593. Our results indicate that K
Ca
2 channels underlie prolonged AHPs in these neurons and suggest that K
Ca
2 modulators may serve as effective tools to explore the role of K
Ca
channels in leech physiology.</description><identifier>ISSN: 0340-7594</identifier><identifier>EISSN: 1432-1351</identifier><identifier>DOI: 10.1007/s00359-021-01462-w</identifier><identifier>PMID: 33483833</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>1-Naphthylamine - analogs & derivatives ; 1-Naphthylamine - pharmacology ; Animal Physiology ; Animals ; Biomedical and Life Sciences ; Calcium ; Calcium - metabolism ; Calcium channels ; Calcium conductance ; Calcium ions ; Channels ; Firing pattern ; Hirudo medicinalis - drug effects ; Hirudo medicinalis - physiology ; Life Sciences ; Membrane Potentials ; Modulators ; Motor Neurons - drug effects ; Motor Neurons - physiology ; Neuromodulation ; Neurons ; Neurosciences ; Original Paper ; Pharmacology ; Potassium ; Potassium channels ; Potassium channels (calcium-gated) ; Potassium Channels, Calcium-Activated - metabolism ; Pyrazoles - pharmacology ; Pyrimidines - pharmacology ; Resistance ; Vertebrates ; Zoology</subject><ispartof>Journal of Comparative Physiology, 2021, Vol.207 (1), p.69-85</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-44f844a0a8b7785a822e6a813a50f76020234fa5b105686bc0749bc28dd80433</citedby><cites>FETCH-LOGICAL-c375t-44f844a0a8b7785a822e6a813a50f76020234fa5b105686bc0749bc28dd80433</cites><orcidid>0000-0001-7796-8413</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33483833$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Angstadt, James D.</creatorcontrib><creatorcontrib>Rebel, Matthew I.</creatorcontrib><creatorcontrib>Connolly, Megan K.</creatorcontrib><title>Effects of calcium-activated potassium channel modulators on afterhyperpolarizing potentials in identified motor and mechanosensory neurons of the medicinal leech</title><title>Journal of Comparative Physiology</title><addtitle>J Comp Physiol A</addtitle><addtitle>J Comp Physiol A Neuroethol Sens Neural Behav Physiol</addtitle><description>Calcium-activated potassium (K
Ca
) channels contribute to multiple neuronal properties including spike frequency and afterhyperpolarizing potentials (AHPs). K
Ca
channels are classified as K
Ca
1.1, K
Ca
2, or K
Ca
3.1 based on single-channel conductance and pharmacology. Ca
2+
-dependent AHPs in vertebrates are categorized as fast, medium, or slow. Fast and medium AHPs are generated by K
Ca
1.1 and K
Ca
2 channels, respectively. The K
Ca
subtype responsible for slow AHPs is unclear. Prolonged, Ca
2+
-dependent AHPs have been described in several leech neurons. Unfortunately, apamin and other K
Ca
blockers often prove ineffective in the leech. An alternative approach is to utilize K
Ca
modulators, which alter channel sensitivity to Ca
2+
. Vertebrate K
Ca
2 channels are targeted selectively by the positive modulator CyPPA and the negative modulator NS8593. Here we show that AHPs in identified motor and mechanosensory leech neurons are enhanced by CyPPA and suppressed by NS8593. Our results indicate that K
Ca
2 channels underlie prolonged AHPs in these neurons and suggest that K
Ca
2 modulators may serve as effective tools to explore the role of K
Ca
channels in leech physiology.</description><subject>1-Naphthylamine - analogs & derivatives</subject><subject>1-Naphthylamine - pharmacology</subject><subject>Animal Physiology</subject><subject>Animals</subject><subject>Biomedical and Life Sciences</subject><subject>Calcium</subject><subject>Calcium - metabolism</subject><subject>Calcium channels</subject><subject>Calcium conductance</subject><subject>Calcium ions</subject><subject>Channels</subject><subject>Firing pattern</subject><subject>Hirudo medicinalis - drug effects</subject><subject>Hirudo medicinalis - physiology</subject><subject>Life Sciences</subject><subject>Membrane Potentials</subject><subject>Modulators</subject><subject>Motor Neurons - drug effects</subject><subject>Motor Neurons - physiology</subject><subject>Neuromodulation</subject><subject>Neurons</subject><subject>Neurosciences</subject><subject>Original Paper</subject><subject>Pharmacology</subject><subject>Potassium</subject><subject>Potassium channels</subject><subject>Potassium channels (calcium-gated)</subject><subject>Potassium Channels, Calcium-Activated - metabolism</subject><subject>Pyrazoles - pharmacology</subject><subject>Pyrimidines - pharmacology</subject><subject>Resistance</subject><subject>Vertebrates</subject><subject>Zoology</subject><issn>0340-7594</issn><issn>1432-1351</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kc1u1TAQhS0EoreFF2CBLLFhExj_JHGWqCoUqRKb7qOJY_e6SuxgO1S3j8OT4txbQGLBymPPd45Hcwh5w-ADA2g_JgBRdxVwVgGTDa8enpEdk4JXTNTsOdmBkFC1dSfPyHlK9wAF5ewlORNCKqGE2JGfV9YanRMNlmqctFvnCnV2PzCbkS4hY0rljeo9em8mOodxnTCHWBSeos0m7g-LiUuYMLpH5-82kfHZ4ZSo89SN28W64jaHoqPoS2U2v5CMTyEeqDdrDP44Q96b0h2ddh4nOpkCviIvbDEzr5_OC3L7-er28rq6-fbl6-Wnm0qLts6VlFZJiYBqaFtVo-LcNKiYwBps2wAHLqTFemBQN6oZNLSyGzRX46hACnFB3p9slxi-ryblfnZJm2lCb8Kaei43rJFdU9B3_6D3YY1l4COlgHcgoVD8ROkYUorG9kt0M8ZDz6DfAuxPAfYllf4YYP9QRG-frNeh7OGP5HdiBRAnIJWWvzPx79__sf0FyNGp-A</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Angstadt, James D.</creator><creator>Rebel, Matthew I.</creator><creator>Connolly, Megan K.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7796-8413</orcidid></search><sort><creationdate>2021</creationdate><title>Effects of calcium-activated potassium channel modulators on afterhyperpolarizing potentials in identified motor and mechanosensory neurons of the medicinal leech</title><author>Angstadt, James D. ; Rebel, Matthew I. ; Connolly, Megan K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-44f844a0a8b7785a822e6a813a50f76020234fa5b105686bc0749bc28dd80433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>1-Naphthylamine - analogs & derivatives</topic><topic>1-Naphthylamine - pharmacology</topic><topic>Animal Physiology</topic><topic>Animals</topic><topic>Biomedical and Life Sciences</topic><topic>Calcium</topic><topic>Calcium - metabolism</topic><topic>Calcium channels</topic><topic>Calcium conductance</topic><topic>Calcium ions</topic><topic>Channels</topic><topic>Firing pattern</topic><topic>Hirudo medicinalis - drug effects</topic><topic>Hirudo medicinalis - physiology</topic><topic>Life Sciences</topic><topic>Membrane Potentials</topic><topic>Modulators</topic><topic>Motor Neurons - drug effects</topic><topic>Motor Neurons - physiology</topic><topic>Neuromodulation</topic><topic>Neurons</topic><topic>Neurosciences</topic><topic>Original Paper</topic><topic>Pharmacology</topic><topic>Potassium</topic><topic>Potassium channels</topic><topic>Potassium channels (calcium-gated)</topic><topic>Potassium Channels, Calcium-Activated - metabolism</topic><topic>Pyrazoles - pharmacology</topic><topic>Pyrimidines - pharmacology</topic><topic>Resistance</topic><topic>Vertebrates</topic><topic>Zoology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Angstadt, James D.</creatorcontrib><creatorcontrib>Rebel, Matthew I.</creatorcontrib><creatorcontrib>Connolly, Megan K.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of Comparative Physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Angstadt, James D.</au><au>Rebel, Matthew I.</au><au>Connolly, Megan K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of calcium-activated potassium channel modulators on afterhyperpolarizing potentials in identified motor and mechanosensory neurons of the medicinal leech</atitle><jtitle>Journal of Comparative Physiology</jtitle><stitle>J Comp Physiol A</stitle><addtitle>J Comp Physiol A Neuroethol Sens Neural Behav Physiol</addtitle><date>2021</date><risdate>2021</risdate><volume>207</volume><issue>1</issue><spage>69</spage><epage>85</epage><pages>69-85</pages><issn>0340-7594</issn><eissn>1432-1351</eissn><abstract>Calcium-activated potassium (K
Ca
) channels contribute to multiple neuronal properties including spike frequency and afterhyperpolarizing potentials (AHPs). K
Ca
channels are classified as K
Ca
1.1, K
Ca
2, or K
Ca
3.1 based on single-channel conductance and pharmacology. Ca
2+
-dependent AHPs in vertebrates are categorized as fast, medium, or slow. Fast and medium AHPs are generated by K
Ca
1.1 and K
Ca
2 channels, respectively. The K
Ca
subtype responsible for slow AHPs is unclear. Prolonged, Ca
2+
-dependent AHPs have been described in several leech neurons. Unfortunately, apamin and other K
Ca
blockers often prove ineffective in the leech. An alternative approach is to utilize K
Ca
modulators, which alter channel sensitivity to Ca
2+
. Vertebrate K
Ca
2 channels are targeted selectively by the positive modulator CyPPA and the negative modulator NS8593. Here we show that AHPs in identified motor and mechanosensory leech neurons are enhanced by CyPPA and suppressed by NS8593. Our results indicate that K
Ca
2 channels underlie prolonged AHPs in these neurons and suggest that K
Ca
2 modulators may serve as effective tools to explore the role of K
Ca
channels in leech physiology.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>33483833</pmid><doi>10.1007/s00359-021-01462-w</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-7796-8413</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0340-7594 |
ispartof | Journal of Comparative Physiology, 2021, Vol.207 (1), p.69-85 |
issn | 0340-7594 1432-1351 |
language | eng |
recordid | cdi_proquest_miscellaneous_2480436496 |
source | Springer Nature |
subjects | 1-Naphthylamine - analogs & derivatives 1-Naphthylamine - pharmacology Animal Physiology Animals Biomedical and Life Sciences Calcium Calcium - metabolism Calcium channels Calcium conductance Calcium ions Channels Firing pattern Hirudo medicinalis - drug effects Hirudo medicinalis - physiology Life Sciences Membrane Potentials Modulators Motor Neurons - drug effects Motor Neurons - physiology Neuromodulation Neurons Neurosciences Original Paper Pharmacology Potassium Potassium channels Potassium channels (calcium-gated) Potassium Channels, Calcium-Activated - metabolism Pyrazoles - pharmacology Pyrimidines - pharmacology Resistance Vertebrates Zoology |
title | Effects of calcium-activated potassium channel modulators on afterhyperpolarizing potentials in identified motor and mechanosensory neurons of the medicinal leech |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T01%3A28%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20calcium-activated%20potassium%20channel%20modulators%20on%20afterhyperpolarizing%20potentials%20in%20identified%20motor%20and%20mechanosensory%20neurons%20of%20the%20medicinal%20leech&rft.jtitle=Journal%20of%20Comparative%20Physiology&rft.au=Angstadt,%20James%20D.&rft.date=2021&rft.volume=207&rft.issue=1&rft.spage=69&rft.epage=85&rft.pages=69-85&rft.issn=0340-7594&rft.eissn=1432-1351&rft_id=info:doi/10.1007/s00359-021-01462-w&rft_dat=%3Cproquest_cross%3E2488029040%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c375t-44f844a0a8b7785a822e6a813a50f76020234fa5b105686bc0749bc28dd80433%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2488029040&rft_id=info:pmid/33483833&rfr_iscdi=true |