Loading…

Effects of calcium-activated potassium channel modulators on afterhyperpolarizing potentials in identified motor and mechanosensory neurons of the medicinal leech

Calcium-activated potassium (K Ca ) channels contribute to multiple neuronal properties including spike frequency and afterhyperpolarizing potentials (AHPs). K Ca channels are classified as K Ca 1.1, K Ca 2, or K Ca 3.1 based on single-channel conductance and pharmacology. Ca 2+ -dependent AHPs in v...

Full description

Saved in:
Bibliographic Details
Published in:Journal of Comparative Physiology 2021, Vol.207 (1), p.69-85
Main Authors: Angstadt, James D., Rebel, Matthew I., Connolly, Megan K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c375t-44f844a0a8b7785a822e6a813a50f76020234fa5b105686bc0749bc28dd80433
cites cdi_FETCH-LOGICAL-c375t-44f844a0a8b7785a822e6a813a50f76020234fa5b105686bc0749bc28dd80433
container_end_page 85
container_issue 1
container_start_page 69
container_title Journal of Comparative Physiology
container_volume 207
creator Angstadt, James D.
Rebel, Matthew I.
Connolly, Megan K.
description Calcium-activated potassium (K Ca ) channels contribute to multiple neuronal properties including spike frequency and afterhyperpolarizing potentials (AHPs). K Ca channels are classified as K Ca 1.1, K Ca 2, or K Ca 3.1 based on single-channel conductance and pharmacology. Ca 2+ -dependent AHPs in vertebrates are categorized as fast, medium, or slow. Fast and medium AHPs are generated by K Ca 1.1 and K Ca 2 channels, respectively. The K Ca subtype responsible for slow AHPs is unclear. Prolonged, Ca 2+ -dependent AHPs have been described in several leech neurons. Unfortunately, apamin and other K Ca blockers often prove ineffective in the leech. An alternative approach is to utilize K Ca modulators, which alter channel sensitivity to Ca 2+ . Vertebrate K Ca 2 channels are targeted selectively by the positive modulator CyPPA and the negative modulator NS8593. Here we show that AHPs in identified motor and mechanosensory leech neurons are enhanced by CyPPA and suppressed by NS8593. Our results indicate that K Ca 2 channels underlie prolonged AHPs in these neurons and suggest that K Ca 2 modulators may serve as effective tools to explore the role of K Ca channels in leech physiology.
doi_str_mv 10.1007/s00359-021-01462-w
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2480436496</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2488029040</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-44f844a0a8b7785a822e6a813a50f76020234fa5b105686bc0749bc28dd80433</originalsourceid><addsrcrecordid>eNp9kc1u1TAQhS0EoreFF2CBLLFhExj_JHGWqCoUqRKb7qOJY_e6SuxgO1S3j8OT4txbQGLBymPPd45Hcwh5w-ADA2g_JgBRdxVwVgGTDa8enpEdk4JXTNTsOdmBkFC1dSfPyHlK9wAF5ewlORNCKqGE2JGfV9YanRMNlmqctFvnCnV2PzCbkS4hY0rljeo9em8mOodxnTCHWBSeos0m7g-LiUuYMLpH5-82kfHZ4ZSo89SN28W64jaHoqPoS2U2v5CMTyEeqDdrDP44Q96b0h2ddh4nOpkCviIvbDEzr5_OC3L7-er28rq6-fbl6-Wnm0qLts6VlFZJiYBqaFtVo-LcNKiYwBps2wAHLqTFemBQN6oZNLSyGzRX46hACnFB3p9slxi-ryblfnZJm2lCb8Kaei43rJFdU9B3_6D3YY1l4COlgHcgoVD8ROkYUorG9kt0M8ZDz6DfAuxPAfYllf4YYP9QRG-frNeh7OGP5HdiBRAnIJWWvzPx79__sf0FyNGp-A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2488029040</pqid></control><display><type>article</type><title>Effects of calcium-activated potassium channel modulators on afterhyperpolarizing potentials in identified motor and mechanosensory neurons of the medicinal leech</title><source>Springer Nature</source><creator>Angstadt, James D. ; Rebel, Matthew I. ; Connolly, Megan K.</creator><creatorcontrib>Angstadt, James D. ; Rebel, Matthew I. ; Connolly, Megan K.</creatorcontrib><description>Calcium-activated potassium (K Ca ) channels contribute to multiple neuronal properties including spike frequency and afterhyperpolarizing potentials (AHPs). K Ca channels are classified as K Ca 1.1, K Ca 2, or K Ca 3.1 based on single-channel conductance and pharmacology. Ca 2+ -dependent AHPs in vertebrates are categorized as fast, medium, or slow. Fast and medium AHPs are generated by K Ca 1.1 and K Ca 2 channels, respectively. The K Ca subtype responsible for slow AHPs is unclear. Prolonged, Ca 2+ -dependent AHPs have been described in several leech neurons. Unfortunately, apamin and other K Ca blockers often prove ineffective in the leech. An alternative approach is to utilize K Ca modulators, which alter channel sensitivity to Ca 2+ . Vertebrate K Ca 2 channels are targeted selectively by the positive modulator CyPPA and the negative modulator NS8593. Here we show that AHPs in identified motor and mechanosensory leech neurons are enhanced by CyPPA and suppressed by NS8593. Our results indicate that K Ca 2 channels underlie prolonged AHPs in these neurons and suggest that K Ca 2 modulators may serve as effective tools to explore the role of K Ca channels in leech physiology.</description><identifier>ISSN: 0340-7594</identifier><identifier>EISSN: 1432-1351</identifier><identifier>DOI: 10.1007/s00359-021-01462-w</identifier><identifier>PMID: 33483833</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>1-Naphthylamine - analogs &amp; derivatives ; 1-Naphthylamine - pharmacology ; Animal Physiology ; Animals ; Biomedical and Life Sciences ; Calcium ; Calcium - metabolism ; Calcium channels ; Calcium conductance ; Calcium ions ; Channels ; Firing pattern ; Hirudo medicinalis - drug effects ; Hirudo medicinalis - physiology ; Life Sciences ; Membrane Potentials ; Modulators ; Motor Neurons - drug effects ; Motor Neurons - physiology ; Neuromodulation ; Neurons ; Neurosciences ; Original Paper ; Pharmacology ; Potassium ; Potassium channels ; Potassium channels (calcium-gated) ; Potassium Channels, Calcium-Activated - metabolism ; Pyrazoles - pharmacology ; Pyrimidines - pharmacology ; Resistance ; Vertebrates ; Zoology</subject><ispartof>Journal of Comparative Physiology, 2021, Vol.207 (1), p.69-85</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-44f844a0a8b7785a822e6a813a50f76020234fa5b105686bc0749bc28dd80433</citedby><cites>FETCH-LOGICAL-c375t-44f844a0a8b7785a822e6a813a50f76020234fa5b105686bc0749bc28dd80433</cites><orcidid>0000-0001-7796-8413</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33483833$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Angstadt, James D.</creatorcontrib><creatorcontrib>Rebel, Matthew I.</creatorcontrib><creatorcontrib>Connolly, Megan K.</creatorcontrib><title>Effects of calcium-activated potassium channel modulators on afterhyperpolarizing potentials in identified motor and mechanosensory neurons of the medicinal leech</title><title>Journal of Comparative Physiology</title><addtitle>J Comp Physiol A</addtitle><addtitle>J Comp Physiol A Neuroethol Sens Neural Behav Physiol</addtitle><description>Calcium-activated potassium (K Ca ) channels contribute to multiple neuronal properties including spike frequency and afterhyperpolarizing potentials (AHPs). K Ca channels are classified as K Ca 1.1, K Ca 2, or K Ca 3.1 based on single-channel conductance and pharmacology. Ca 2+ -dependent AHPs in vertebrates are categorized as fast, medium, or slow. Fast and medium AHPs are generated by K Ca 1.1 and K Ca 2 channels, respectively. The K Ca subtype responsible for slow AHPs is unclear. Prolonged, Ca 2+ -dependent AHPs have been described in several leech neurons. Unfortunately, apamin and other K Ca blockers often prove ineffective in the leech. An alternative approach is to utilize K Ca modulators, which alter channel sensitivity to Ca 2+ . Vertebrate K Ca 2 channels are targeted selectively by the positive modulator CyPPA and the negative modulator NS8593. Here we show that AHPs in identified motor and mechanosensory leech neurons are enhanced by CyPPA and suppressed by NS8593. Our results indicate that K Ca 2 channels underlie prolonged AHPs in these neurons and suggest that K Ca 2 modulators may serve as effective tools to explore the role of K Ca channels in leech physiology.</description><subject>1-Naphthylamine - analogs &amp; derivatives</subject><subject>1-Naphthylamine - pharmacology</subject><subject>Animal Physiology</subject><subject>Animals</subject><subject>Biomedical and Life Sciences</subject><subject>Calcium</subject><subject>Calcium - metabolism</subject><subject>Calcium channels</subject><subject>Calcium conductance</subject><subject>Calcium ions</subject><subject>Channels</subject><subject>Firing pattern</subject><subject>Hirudo medicinalis - drug effects</subject><subject>Hirudo medicinalis - physiology</subject><subject>Life Sciences</subject><subject>Membrane Potentials</subject><subject>Modulators</subject><subject>Motor Neurons - drug effects</subject><subject>Motor Neurons - physiology</subject><subject>Neuromodulation</subject><subject>Neurons</subject><subject>Neurosciences</subject><subject>Original Paper</subject><subject>Pharmacology</subject><subject>Potassium</subject><subject>Potassium channels</subject><subject>Potassium channels (calcium-gated)</subject><subject>Potassium Channels, Calcium-Activated - metabolism</subject><subject>Pyrazoles - pharmacology</subject><subject>Pyrimidines - pharmacology</subject><subject>Resistance</subject><subject>Vertebrates</subject><subject>Zoology</subject><issn>0340-7594</issn><issn>1432-1351</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kc1u1TAQhS0EoreFF2CBLLFhExj_JHGWqCoUqRKb7qOJY_e6SuxgO1S3j8OT4txbQGLBymPPd45Hcwh5w-ADA2g_JgBRdxVwVgGTDa8enpEdk4JXTNTsOdmBkFC1dSfPyHlK9wAF5ewlORNCKqGE2JGfV9YanRMNlmqctFvnCnV2PzCbkS4hY0rljeo9em8mOodxnTCHWBSeos0m7g-LiUuYMLpH5-82kfHZ4ZSo89SN28W64jaHoqPoS2U2v5CMTyEeqDdrDP44Q96b0h2ddh4nOpkCviIvbDEzr5_OC3L7-er28rq6-fbl6-Wnm0qLts6VlFZJiYBqaFtVo-LcNKiYwBps2wAHLqTFemBQN6oZNLSyGzRX46hACnFB3p9slxi-ryblfnZJm2lCb8Kaei43rJFdU9B3_6D3YY1l4COlgHcgoVD8ROkYUorG9kt0M8ZDz6DfAuxPAfYllf4YYP9QRG-frNeh7OGP5HdiBRAnIJWWvzPx79__sf0FyNGp-A</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Angstadt, James D.</creator><creator>Rebel, Matthew I.</creator><creator>Connolly, Megan K.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7796-8413</orcidid></search><sort><creationdate>2021</creationdate><title>Effects of calcium-activated potassium channel modulators on afterhyperpolarizing potentials in identified motor and mechanosensory neurons of the medicinal leech</title><author>Angstadt, James D. ; Rebel, Matthew I. ; Connolly, Megan K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-44f844a0a8b7785a822e6a813a50f76020234fa5b105686bc0749bc28dd80433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>1-Naphthylamine - analogs &amp; derivatives</topic><topic>1-Naphthylamine - pharmacology</topic><topic>Animal Physiology</topic><topic>Animals</topic><topic>Biomedical and Life Sciences</topic><topic>Calcium</topic><topic>Calcium - metabolism</topic><topic>Calcium channels</topic><topic>Calcium conductance</topic><topic>Calcium ions</topic><topic>Channels</topic><topic>Firing pattern</topic><topic>Hirudo medicinalis - drug effects</topic><topic>Hirudo medicinalis - physiology</topic><topic>Life Sciences</topic><topic>Membrane Potentials</topic><topic>Modulators</topic><topic>Motor Neurons - drug effects</topic><topic>Motor Neurons - physiology</topic><topic>Neuromodulation</topic><topic>Neurons</topic><topic>Neurosciences</topic><topic>Original Paper</topic><topic>Pharmacology</topic><topic>Potassium</topic><topic>Potassium channels</topic><topic>Potassium channels (calcium-gated)</topic><topic>Potassium Channels, Calcium-Activated - metabolism</topic><topic>Pyrazoles - pharmacology</topic><topic>Pyrimidines - pharmacology</topic><topic>Resistance</topic><topic>Vertebrates</topic><topic>Zoology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Angstadt, James D.</creatorcontrib><creatorcontrib>Rebel, Matthew I.</creatorcontrib><creatorcontrib>Connolly, Megan K.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of Comparative Physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Angstadt, James D.</au><au>Rebel, Matthew I.</au><au>Connolly, Megan K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of calcium-activated potassium channel modulators on afterhyperpolarizing potentials in identified motor and mechanosensory neurons of the medicinal leech</atitle><jtitle>Journal of Comparative Physiology</jtitle><stitle>J Comp Physiol A</stitle><addtitle>J Comp Physiol A Neuroethol Sens Neural Behav Physiol</addtitle><date>2021</date><risdate>2021</risdate><volume>207</volume><issue>1</issue><spage>69</spage><epage>85</epage><pages>69-85</pages><issn>0340-7594</issn><eissn>1432-1351</eissn><abstract>Calcium-activated potassium (K Ca ) channels contribute to multiple neuronal properties including spike frequency and afterhyperpolarizing potentials (AHPs). K Ca channels are classified as K Ca 1.1, K Ca 2, or K Ca 3.1 based on single-channel conductance and pharmacology. Ca 2+ -dependent AHPs in vertebrates are categorized as fast, medium, or slow. Fast and medium AHPs are generated by K Ca 1.1 and K Ca 2 channels, respectively. The K Ca subtype responsible for slow AHPs is unclear. Prolonged, Ca 2+ -dependent AHPs have been described in several leech neurons. Unfortunately, apamin and other K Ca blockers often prove ineffective in the leech. An alternative approach is to utilize K Ca modulators, which alter channel sensitivity to Ca 2+ . Vertebrate K Ca 2 channels are targeted selectively by the positive modulator CyPPA and the negative modulator NS8593. Here we show that AHPs in identified motor and mechanosensory leech neurons are enhanced by CyPPA and suppressed by NS8593. Our results indicate that K Ca 2 channels underlie prolonged AHPs in these neurons and suggest that K Ca 2 modulators may serve as effective tools to explore the role of K Ca channels in leech physiology.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>33483833</pmid><doi>10.1007/s00359-021-01462-w</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-7796-8413</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0340-7594
ispartof Journal of Comparative Physiology, 2021, Vol.207 (1), p.69-85
issn 0340-7594
1432-1351
language eng
recordid cdi_proquest_miscellaneous_2480436496
source Springer Nature
subjects 1-Naphthylamine - analogs & derivatives
1-Naphthylamine - pharmacology
Animal Physiology
Animals
Biomedical and Life Sciences
Calcium
Calcium - metabolism
Calcium channels
Calcium conductance
Calcium ions
Channels
Firing pattern
Hirudo medicinalis - drug effects
Hirudo medicinalis - physiology
Life Sciences
Membrane Potentials
Modulators
Motor Neurons - drug effects
Motor Neurons - physiology
Neuromodulation
Neurons
Neurosciences
Original Paper
Pharmacology
Potassium
Potassium channels
Potassium channels (calcium-gated)
Potassium Channels, Calcium-Activated - metabolism
Pyrazoles - pharmacology
Pyrimidines - pharmacology
Resistance
Vertebrates
Zoology
title Effects of calcium-activated potassium channel modulators on afterhyperpolarizing potentials in identified motor and mechanosensory neurons of the medicinal leech
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T01%3A28%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20calcium-activated%20potassium%20channel%20modulators%20on%20afterhyperpolarizing%20potentials%20in%20identified%20motor%20and%20mechanosensory%20neurons%20of%20the%20medicinal%20leech&rft.jtitle=Journal%20of%20Comparative%20Physiology&rft.au=Angstadt,%20James%20D.&rft.date=2021&rft.volume=207&rft.issue=1&rft.spage=69&rft.epage=85&rft.pages=69-85&rft.issn=0340-7594&rft.eissn=1432-1351&rft_id=info:doi/10.1007/s00359-021-01462-w&rft_dat=%3Cproquest_cross%3E2488029040%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c375t-44f844a0a8b7785a822e6a813a50f76020234fa5b105686bc0749bc28dd80433%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2488029040&rft_id=info:pmid/33483833&rfr_iscdi=true