Loading…

Sampling Based Tumor Recognition in Whole-Slide Histology Image With Deep Learning Approaches

Histopathological identification of tumor tissue is one of the routine pathological diagnoses for pathologists. Recently, computational pathology has been successfully interpreted by a variety of deep learning-based applications. Nevertheless, the high-efficient and spatial-correlated processing of...

Full description

Saved in:
Bibliographic Details
Published in:IEEE/ACM transactions on computational biology and bioinformatics 2022-07, Vol.19 (4), p.2431-2441
Main Authors: Shen, Yiqing, Ke, Jing
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Histopathological identification of tumor tissue is one of the routine pathological diagnoses for pathologists. Recently, computational pathology has been successfully interpreted by a variety of deep learning-based applications. Nevertheless, the high-efficient and spatial-correlated processing of individual patches have always attracted attention in whole-slide image (WSI) analysis. In this paper, we propose a high-throughput system to detect tumor regions in colorectal cancer histology slides precisely. We train a deep convolutional neural network (CNN) model and design a Monte Carlo (MC) adaptive sampling method to estimate the most representative patches in a WSI. Two conditional random field (CRF) models are designed, namely the correction CRF and the prediction CRF are integrated for spatial dependencies of patches. We use three datasets of colorectal cancer from The Cancer Genome Atlas (TCGA) to evaluate the performance of the system. The overall diagnostic time can be reduced from 56.7 percent to 71.7 percent on the slides of a varying tumor distribution, with an increase in classification accuracy.
ISSN:1545-5963
1557-9964
DOI:10.1109/TCBB.2021.3062230