Loading…

Untargeted metabolomics and DNA barcoding for discrimination of Phyllanthus species

Phyllanthus species is extensively cultivated and used as edible fruits and herbal drugs. The Phyllanthus species are used extensively as ethnopharmacologically important materials in several countries, especially in Asia. Various Phyllanthus species are broadly used in the Ayurvedic system of medic...

Full description

Saved in:
Bibliographic Details
Published in:Journal of ethnopharmacology 2021-06, Vol.273, p.113928-113928, Article 113928
Main Authors: Kiran, Kodsara Ramachandra, Swathy, Puthanvila Surendrababu, Paul, Bobby, Shama Prasada, Kabekkodu, Radhakrishna Rao, Mattu, Joshi, Manjunath B., Rai, Padmalatha S., Satyamoorthy, Kapaettu, Muthusamy, Annamalai
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Phyllanthus species is extensively cultivated and used as edible fruits and herbal drugs. The Phyllanthus species are used extensively as ethnopharmacologically important materials in several countries, especially in Asia. Various Phyllanthus species are broadly used in the Ayurvedic system of medicine and deliberated as bitter, astringent, stomachic, diuretic, febrifuge, deobstruent, and antiseptic, and used for the treatment of digestive, genitourinary, respiratory, skin diseases, hepatopathy, jaundice, and renal calculus in India. Precise authentification of Phyllanthus species is a challenge due to morphological similarities and is important to avoid adulteration found in herbal drugs. Hence, there is a need to establish comprehensive methods for the identification of Phyllanthus species. In this study, we attempted to integrate untargeted metabolomics to identify species-specific metabolites with traditional phylogenetic analysis for identification and discrimination of nine Phyllanthus species. Phyllanthus species such as P. acidus, P. amarus, P. debilis, P. emblica, P. virgatus, P. urinaria, P. lawii, P. myrtifolius, and P. reticulatus were collected. The liquid chromatography coupled mass spectrometry (LC-MS) was performed for untargeted metabolite profiling and MS/MS fragmentation analysis was performed for selected compounds. Further, the barcoding analysis was executed using plastid loci, rpoC1 to integrate with metabolite profiling data. The Principal Component Analysis (PCA) of leaf metabolites showed distinct clusters in different species. Through further analysis, we have also identified the qualitative and quantitative status of unique metabolites across the species, and the majority of the selected compounds were annotated. The metabolic fingerprinting and the hierarchical clustering indicated that though the P. deblis and P. virgatus are distantly related to each other, they are closely associated with their metabolic profiling. Similarly, P. myrtifolius and P. urinaria are closely related to each other with their metabolic fingerprints than the genetic alignment. Further, we performed barcoding with rpoC1 across nine Phyllanthus species (P. acidus, P. amarus, P. debilis, P. emblica, P. virgatus, P. urinaria, P. lawii, P. myrtifolius, and P. reticulatus). Sequence similarity search in the GenBank database showed rpoC1 barcode loci from nine Phyllanthus species showed significant identity (>97%) with the sequences of various Phyllanthus sp
ISSN:0378-8741
1872-7573
DOI:10.1016/j.jep.2021.113928