Loading…

Low V π thin-film lithium niobate modulator fabricated with photolithography

Thin-film lithium niobate (TFLN) modulators are expected to be an ideal solution to achieve a super-wide modulation bandwidth needed by the next-generation optical communication system. To improve the performance, especially to reduce the driving voltage, we have carried out a detailed design of the...

Full description

Saved in:
Bibliographic Details
Published in:Optics express 2021-03, Vol.29 (5), p.6320-6329
Main Authors: Liu, Ye, Li, Heng, Liu, Jia, Tan, Su, Lu, Qiaoyin, Guo, Weihua
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Thin-film lithium niobate (TFLN) modulators are expected to be an ideal solution to achieve a super-wide modulation bandwidth needed by the next-generation optical communication system. To improve the performance, especially to reduce the driving voltage, we have carried out a detailed design of the TFLN push-pull modulator by calculating 2D maps of the optical losses and V for different ridge waveguide depths and electrode gaps. Afterwards the modulator with travelling wave electrodes was fabricated through i-line photolithography and then characterized. The measured V for a modulator with 5-mm modulation arm length is 3.5 V, corresponding to voltage-length product of 1.75 V·cm, which is the lowest among similar modulators as far as we know. And the measured electro-optic response has a 3-dB bandwidth beyond 40 GHz, which is the limitation of our measurement capability. The detailed design, fabrication and measurement results are presented.
ISSN:1094-4087
1094-4087
DOI:10.1364/OE.414250