Loading…

Helicobacter pylori-targeting multiligand photosensitizer for effective antibacterial endoscopic photodynamic therapy

Helicobacter pylori (H. pylori) infection is closely associated with the development of gastric inflammatory diseases and cancer. However, the continued abuse and misuse of antibiotics has accelerated the spread of antibiotic-resistant strains, which poses a tremendous challenge for antibiotic-based...

Full description

Saved in:
Bibliographic Details
Published in:Biomaterials 2021-04, Vol.271, p.120745-120745, Article 120745
Main Authors: Im, Byeong Nam, Shin, Heejun, Lim, Byoungjun, Lee, Jonghwan, Kim, Kyoung Sub, Park, Jae Myeong, Na, Kun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Helicobacter pylori (H. pylori) infection is closely associated with the development of gastric inflammatory diseases and cancer. However, the continued abuse and misuse of antibiotics has accelerated the spread of antibiotic-resistant strains, which poses a tremendous challenge for antibiotic-based H. pylori treatment. In this study, a H. pylori-targeting photodynamic therapy (PDT) system is proposed that multiple 3′-sialyllactose (3SL)-conjugated, poly-l-lysine-based photosensitizer (p3SLP). p3SLP facilitates H. pylori-targeting PDT via the specific interaction between 3SL and sialic acid-binding adhesin (SabA) in the H. pylori membrane. p3SLP can be orally administered to H. pylori infected mice and irradiated using an endoscopic laser system. The gastrointestinal pathological analysis of the H. pylori-infected mice demonstrated significant H. pylori specific antibacterial effects of PDT without side effects to normal tissue. In addition, an anti-inflammatory response was observed at the site of infection after p3SLP treatment. Consequently, this study demonstrates the superior efficacy of anti-H. pylori PDT with p3SLP in H. pylori-infected mice, and this approach shows great potential for replacing antibiotic-based therapy.
ISSN:0142-9612
1878-5905
DOI:10.1016/j.biomaterials.2021.120745