Loading…
Intravascular ultrasound-based deep learning for plaque characterization in coronary artery disease
Although plaque characterization by intravascular ultrasound (IVUS) is important for risk stratification, frame-by-frame analysis of a whole vascular segment is time-consuming. The aim was to develop IVUS-based algorithms for classifying attenuation and calcified plaques. IVUS image sets of 598 coro...
Saved in:
Published in: | Atherosclerosis 2021-05, Vol.324, p.69-75 |
---|---|
Main Authors: | , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Although plaque characterization by intravascular ultrasound (IVUS) is important for risk stratification, frame-by-frame analysis of a whole vascular segment is time-consuming. The aim was to develop IVUS-based algorithms for classifying attenuation and calcified plaques.
IVUS image sets of 598 coronary arteries from 598 patients were randomized into training and test sets with 5:1 ratio. Each IVUS frame at a 0.4-mm interval was circumferentially labeled as one of three classes: attenuated plaque, calcified plaque, or plaque without attenuation or calcification. The model was trained on multi-class classification with 5-fold cross validation. By converting from Cartesian to polar coordinate images, the class corresponding to each array from 0 to 360° was plotted.
At the angle-level, Dice similarity coefficients for identifying calcification vs. attenuation vs. none by using ensemble model were 0.79, 0.74 and 0.99, respectively. Also, the maximal accuracy was 98% to classify those groups in the test set. At the frame-level, the model identified the presence of attenuation with 80% sensitivity, 96% specificity, and 93% overall accuracy, and the presence of calcium with 86% sensitivity, 97% specificity, and 96% overall accuracy. In the per-vessel analysis, the attenuation and calcification burden index closely correlated with human measurements (r = 0.89 and r = 0.95, respectively), as did the maximal attenuation and calcification burden index over 4 mm (r = 0.82 and r = 0.91, respectively). The inference times were 0.05 s per frame and 7.8 s per vessel.
Our deep learning algorithms for plaque characterization may assist clinicians in recognizing high-risk coronary lesions.
[Display omitted]
•Deep learning algorithms allow automatic learning without explicit programming, potentially improving diagnostic accuracy.•The IVUS-based model demonstrated good performance in classifying and quantifying tissue attenuation and calcification.•It supports clinicians in identifying high-risk lesions that potentially lead to stent under expansion and adverse events. |
---|---|
ISSN: | 0021-9150 1879-1484 |
DOI: | 10.1016/j.atherosclerosis.2021.03.037 |