Loading…

Incorporating Heisenberg's Uncertainty Principle into Quantum Multiparameter Estimation

The quantum multiparameter estimation is very different from the classical multiparameter estimation due to Heisenberg's uncertainty principle in quantum mechanics. When the optimal measurements for different parameters are incompatible, they cannot be jointly performed. We find a correspondenc...

Full description

Saved in:
Bibliographic Details
Published in:Physical review letters 2021-03, Vol.126 (12), p.120503-120503, Article 120503
Main Authors: Lu, Xiao-Ming, Wang, Xiaoguang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The quantum multiparameter estimation is very different from the classical multiparameter estimation due to Heisenberg's uncertainty principle in quantum mechanics. When the optimal measurements for different parameters are incompatible, they cannot be jointly performed. We find a correspondence relationship between the inaccuracy of a measurement for estimating the unknown parameter with the measurement error in the context of measurement uncertainty relations. Taking this correspondence relationship as a bridge, we incorporate Heisenberg's uncertainty principle into quantum multiparameter estimation by giving a trade-off relation between the measurement inaccuracies for estimating different parameters. For pure quantum states, this trade-off relation is tight, so it can reveal the true quantum limits on individual estimation errors in such cases. We apply our approach to derive the trade-off between attainable errors of estimating the real and imaginary parts of a complex signal encoded in coherent states and obtain the joint measurements attaining the trade-off relation. We also show that our approach can be readily used to derive the trade-off between the errors of jointly estimating the phase shift and phase diffusion without explicitly parametrizing quantum measurements.
ISSN:0031-9007
1079-7114
DOI:10.1103/PhysRevLett.126.120503