Loading…

Extensions of scale-space filtering to machine-sensing systems

Major components of scale-space theory are Gaussian filtering, and the use of zero-crossing thresholders and Laplacian operators. Properties of scale-space filtering may be useful for data analysis in multiresolution machine-sensing systems. However, these systems typically violate the Gaussian filt...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on pattern analysis and machine intelligence 1990-09, Vol.12 (9), p.868-882
Main Authors: Zuerndorfer, B., Wakefield, G.H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Major components of scale-space theory are Gaussian filtering, and the use of zero-crossing thresholders and Laplacian operators. Properties of scale-space filtering may be useful for data analysis in multiresolution machine-sensing systems. However, these systems typically violate the Gaussian filter assumption, and often the data analyses used (e.g. trend analysis and classification) are not consistent with zero-crossing thresholders and Laplacian operators. The authors extend the results of scale-space theory to include these more general conditions. In particular, it is shown that relaxing the requirement of linear scaling allows filters to have non-Gaussian spatial characteristics, and that relaxing of the scale requirements (s to 0) of the impulse response allows the use of scale-space filters with limited frequency support (i.e. bandlimited filters). Bandlimited scale-space filters represent an important extension of scale-space analysis for machine sensing.< >
ISSN:0162-8828
1939-3539
DOI:10.1109/34.57682