Loading…
Extensions of scale-space filtering to machine-sensing systems
Major components of scale-space theory are Gaussian filtering, and the use of zero-crossing thresholders and Laplacian operators. Properties of scale-space filtering may be useful for data analysis in multiresolution machine-sensing systems. However, these systems typically violate the Gaussian filt...
Saved in:
Published in: | IEEE transactions on pattern analysis and machine intelligence 1990-09, Vol.12 (9), p.868-882 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Major components of scale-space theory are Gaussian filtering, and the use of zero-crossing thresholders and Laplacian operators. Properties of scale-space filtering may be useful for data analysis in multiresolution machine-sensing systems. However, these systems typically violate the Gaussian filter assumption, and often the data analyses used (e.g. trend analysis and classification) are not consistent with zero-crossing thresholders and Laplacian operators. The authors extend the results of scale-space theory to include these more general conditions. In particular, it is shown that relaxing the requirement of linear scaling allows filters to have non-Gaussian spatial characteristics, and that relaxing of the scale requirements (s to 0) of the impulse response allows the use of scale-space filters with limited frequency support (i.e. bandlimited filters). Bandlimited scale-space filters represent an important extension of scale-space analysis for machine sensing.< > |
---|---|
ISSN: | 0162-8828 1939-3539 |
DOI: | 10.1109/34.57682 |