Loading…

Abort landing in the presence of windshear as a minimax optimal control problem, part 1: Necessary conditions

The landing of a passenger aircraft in the presence of windshear is a threat to aviation safety. The present paper is concerned with the abort landing of an aircraft in such a serious situation. Mathematically, the flight maneuver can be described by a minimax optimal control problem. By transformin...

Full description

Saved in:
Bibliographic Details
Published in:Journal of optimization theory and applications 1991-07, Vol.70 (1), p.1-23
Main Authors: Bulirsch, R., Montrone, F., Pesch, H. J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The landing of a passenger aircraft in the presence of windshear is a threat to aviation safety. The present paper is concerned with the abort landing of an aircraft in such a serious situation. Mathematically, the flight maneuver can be described by a minimax optimal control problem. By transforming this minimax problem into an optimal control problem of standard form, a state constraint has to be taken into account which is of order three. Moreover, two additional constraints, a first-order state constraint and a control variable constraint, are imposed upon the model. Since the only control variable appears linearly, the Hamiltonian is not regular. Thus, well-known existence theorems about the occurrence of boundary arcs and boundary points cannot be applied. Numerically, this optimal control problem is solved by means of the multiple shooting method in connection with an appropriate homotopy strategy. The solution obtained here satisfies all the sharp necessary conditions including those depending on the sign of certain multipliers. The trajectory consists of bang-bang and singular subarcs, as well as boundary subarcs induced by the two state constraints. The occurrence of boundary arcs is known to be impossible for regular Hamiltonians and odd-ordered state constraints if the order exceeds two. Additionally, a boundary point also occurs where the third-order state constraint is active. Such a situation is known to be the only possibility for odd-ordered state constraints to be active if the order exceeds two and if the Hamiltonian is regular.
ISSN:0022-3239
1573-2878
DOI:10.1007/BF00940502