Loading…
Declining Levels of Specialized Synaptic Surface Proteins in nNOS-Expressing Interneurons in Mice Treated Prenatally with Valproic Acid
Autism spectrum disorder (ASD) is a heterogeneous group of neurodevelopmental disorder characterized by impaired social interaction, and repetitive or restricted interests and behaviors. Membrane proteins are a significant part of the proteins in cell and play key functions in synaptic transmission....
Saved in:
Published in: | Neurochemical research 2021-07, Vol.46 (7), p.1794-1800 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Autism spectrum disorder (ASD) is a heterogeneous group of neurodevelopmental disorder characterized by impaired social interaction, and repetitive or restricted interests and behaviors. Membrane proteins are a significant part of the proteins in cell and play key functions in synaptic transmission. We have recently shown that neuronal nitric oxide synthase (nNOS) expression was reduced in the basolateral amygdala (BLA) of mice following postnatal valproic acid (VPA) exposure. In the current study, we utilized a label-free proteomics approach to identify and quantify surface protein expression in nNOS-positive interneurons between VPA-treated and control mice. Western blot was used to confirm the expression of selected membrane proteins. Our proteomics data revealed differentially expressed surface proteins in nNOS interneurons, e.g. Narp, AMPA-type glutamate (AMPA) receptor subunit GluA4 and Protein kinase C gamma (PKCγ), which were validated by Western blotting in mice treated with VPA. This work will pave the way for further elucidation of the mechanisms of these differentially membrane proteins in nNOS interneurons-medicated ASD. |
---|---|
ISSN: | 0364-3190 1573-6903 |
DOI: | 10.1007/s11064-021-03326-w |