Loading…
Observer-Based Event-Triggered Adaptive Fuzzy Control for Unmeasured Stochastic Nonlinear Systems With Unknown Control Directions
The issue of adaptive output-feedback stabilization is investigated for a category of stochastic nonstrict-feedback nonlinear systems subject to unmeasured state and unknown control directions. By combining the event-triggered mechanism and backstepping technology, an adaptive fuzzy output-feedback...
Saved in:
Published in: | IEEE transactions on cybernetics 2022-10, Vol.52 (10), p.10655-10666 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The issue of adaptive output-feedback stabilization is investigated for a category of stochastic nonstrict-feedback nonlinear systems subject to unmeasured state and unknown control directions. By combining the event-triggered mechanism and backstepping technology, an adaptive fuzzy output-feedback controller is devised. In order to make the controller design feasible, a linear state transformation is introduced into the initial system. At the same time, the Nussbaum function technology is used to overcome the difficulties caused by unknown control directions, and the state observer solves the problem of the unmeasured state. Based on the fuzzy-logic system and its structural characteristics, the issue of unknown nonlinear function with nonstrict-feedback structure in the system is tackled. The designed controller could not only guarantee all signals of closed-loop systems are bounded in probability but also save communication resources effectively. Finally, numerical simulation and ship dynamics example are given to confirm the effectiveness of the proposed method. |
---|---|
ISSN: | 2168-2267 2168-2275 |
DOI: | 10.1109/TCYB.2021.3069853 |