Loading…
Reducing metal/graphene contact resistance via N, N-dimethylacetamide-assisted clean fabrication process
Contact resistance ( ) is of great importance for radio frequency (RF) applications of graphene, especially graphene field effect transistors (FETs) with short channel. FETs and transmission line model test structures based on chemical vapor deposition grown graphene are fabricated. The effects of e...
Saved in:
Published in: | Nanotechnology 2021-05, Vol.32 (31), p.315201 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Contact resistance (
) is of great importance for radio frequency (RF) applications of graphene, especially graphene field effect transistors (FETs) with short channel. FETs and transmission line model test structures based on chemical vapor deposition grown graphene are fabricated. The effects of employing traditional lithography solvent (Acetone) and strong solvents for photo resist, such as N, N-Dimethylacetamide (ZDMAC) and N-Methyl pyrrolidone (NMP), are systematically investigated. It was found that ZDMAC and NMP have more proficiency than acetone to remove the photo-resist residues and contaminations attached on graphene surface, enabling clean surface of graphene. However, strong solvents are found to destroy the lattice structure of graphene channel and induce defects in graphene lattice. Clean surface contributes to a significant reduction in the
between graphene channel and metal electrode, and the defects introduced on graphene surface underneath metal electrodes also contribute the reduction of
. But defects and deformation of lattice will increase the resistance in graphene channel and lead to the compromise of device performance. To address this problem, a mix wet-chemical approach employing both acetone and ZDMAC was developed in our study to realize a 19.07% reduction of
, without an unacceptable mass production of defects. |
---|---|
ISSN: | 0957-4484 1361-6528 |
DOI: | 10.1088/1361-6528/abfa56 |