Loading…
Visual exploration of large metabolic models
Abstract Motivation Large metabolic models, including genome-scale metabolic models, are nowadays common in systems biology, biotechnology and pharmacology. They typically contain thousands of metabolites and reactions and therefore methods for their automatic visualization and interactive explorati...
Saved in:
Published in: | Bioinformatics 2021-12, Vol.37 (23), p.4460-4468 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract
Motivation
Large metabolic models, including genome-scale metabolic models, are nowadays common in systems biology, biotechnology and pharmacology. They typically contain thousands of metabolites and reactions and therefore methods for their automatic visualization and interactive exploration can facilitate a better understanding of these models.
Results
We developed a novel method for the visual exploration of large metabolic models and implemented it in LMME (Large Metabolic Model Explorer), an add-on for the biological network analysis tool VANTED. The underlying idea of our method is to analyze a large model as follows. Starting from a decomposition into several subsystems, relationships between these subsystems are identified and an overview is computed and visualized. From this overview, detailed subviews may be constructed and visualized in order to explore subsystems and relationships in greater detail. Decompositions may either be predefined or computed, using built-in or self-implemented methods. Realized as add-on for VANTED, LMME is embedded in a domain-specific environment, allowing for further related analysis at any stage during the exploration. We describe the method, provide a use case and discuss the strengths and weaknesses of different decomposition methods.
Availability and implementation
The methods and algorithms presented here are implemented in LMME, an open-source add-on for VANTED. LMME can be downloaded from www.cls.uni-konstanz.de/software/lmme and VANTED can be downloaded from www.vanted.org. The source code of LMME is available from GitHub, at https://github.com/LSI-UniKonstanz/lmme. |
---|---|
ISSN: | 1367-4803 1460-2059 1367-4811 |
DOI: | 10.1093/bioinformatics/btab335 |