Loading…
Soft Electronic Materials with Combinatorial Properties Generated via Mussel-Inspired Chemistry and Halloysite Nanotube Reinforcement
Soft and electrically active materials are currently being utilized for intelligent systems, including electronic skin, cybernetics, soft robotics, and wearable devices. However, fabricating materials that fulfill the complex requirements of such advanced applications remains a challenge. These attr...
Saved in:
Published in: | ACS nano 2021-06, Vol.15 (6), p.9531-9549 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Soft and electrically active materials are currently being utilized for intelligent systems, including electronic skin, cybernetics, soft robotics, and wearable devices. However, fabricating materials that fulfill the complex requirements of such advanced applications remains a challenge. These attributes include electronic, adhesive, self-healing, flexible, moldable, printable, and strong mechanical properties. Inspired by the recent interest in transforming monofunctional materials into multifunctional ones through nanoreinforcement and mussel-inspired chemistry, we have designed a simple two-step methodology based on halloysite nanotube (HNT) and polydopamine (PDA) to address the grand challenges in the field. In brief, HNTs were coated with PDA and embedded within a poly(vinyl alcohol) (PVA)-based polymeric matrix in combination with ferric ions (Fe3+). The final composite displayed a 3-fold increase in electrical conductivity, a 20-fold increase in mechanical stiffness, and a 7-fold increase in energy dissipation in comparison to their nonfunctional counterparts, which arose from a combination of nanotube alignment and mussel-inspired chemistry. Moreover, the developed composite could elongate up to 30000% of its original length, maintain its electrical properties after 600% strain, self-heal within seconds (both electrically and mechanically), and display strain-sensitivity. Finally, it was 3D-printable and thus amenable for engineering of customized wearable electronics. |
---|---|
ISSN: | 1936-0851 1936-086X |
DOI: | 10.1021/acsnano.0c09204 |