Loading…

Air superhydrophilic-superoleophobic SiO2-based coatings for recoverable oil/water separation mesh with high flux and mechanical stability

[Display omitted] Due to the inherent differences in surface tension between water and oil, it is a challenge to fabricate air superhydrophilic-superoleophobic materials despite their promising potential in the field of oil/water separation. Herein, a facile approach is developed to fabricate air su...

Full description

Saved in:
Bibliographic Details
Published in:Journal of colloid and interface science 2021-10, Vol.600, p.118-126
Main Authors: Xiong, Wei, Li, Ling, Qiao, Fen, Chen, Junwu, Chen, Zhi, Zhou, Xuedong, Hu, Kaiwen, Zhao, Xiujian, Xie, Yi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:[Display omitted] Due to the inherent differences in surface tension between water and oil, it is a challenge to fabricate air superhydrophilic-superoleophobic materials despite their promising potential in the field of oil/water separation. Herein, a facile approach is developed to fabricate air superhydrophilic-superoleophobic SiO2 coating by combination of controllable modifying SiO2 nanoparticle surface by both hydrophilic groups (i.e., –OH groups) and oleophobic groups (i.e., fluorinated groups) with constructing porous and hierarchical structures. Hydroxyl-modified SiO2 nanoparticles (NPs) are synthesized using a base-catalysed procedure in the presence of ammonia or NaOH. Chitosan quaternary ammonium salt (HACC) is introduced to bind SiO2 by forming a unique hydrogen bond between HACC and –OH, followed by adding pentadecafluorooctanoic acid (PFOA) to complex with HACC to form fluorinated groups. The SiO2 coatings are fabricated on various substrates (e.g., glass, foam and Cu mesh) by spraying procedure and characterized using SEM, FTIR, XPS, etc. The contact angles of oils (e.g., pump oil, castor oil, corn oil, hexadecane and bean oil) and water on the coatings are over 150° and close to 0°, respectively. By optimization, the representative SiO2-coated Cu mesh displayed high-efficiency of 99.2% in separating water from mixture of water/pump oil, and high penetration flux of 1.41 × 104 L·m−2 ·h−1. Besides, the coating maintains its superhydrophilic-superoleophobic properties even after 110 cycles of sandpaper abrasion or after being immersed in water for 3 h. After 20 cycles of oil/water separation, the coating retains separation efficiency up to 97.93%. This study provides a new and universal protocol to fabricate unique superwetting surfaces with effective oil/water separation performance, long-term durability and outstanding reusability.
ISSN:0021-9797
1095-7103
DOI:10.1016/j.jcis.2021.05.004