Loading…

Linking minimal and detailed models of CA1 microcircuits reveals how theta rhythms emerge and their frequencies controlled

The wide variety of cell types and their biophysical complexities pose a challenge in our ability to understand oscillatory activities produced by cellular‐based computational network models. This challenge stems from their high‐dimensional and multiparametric natures. To overcome this, we implement...

Full description

Saved in:
Bibliographic Details
Published in:Hippocampus 2021-09, Vol.31 (9), p.982-1002
Main Authors: Chatzikalymniou, Alexandra Pierri, Gumus, Melisa, Skinner, Frances K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The wide variety of cell types and their biophysical complexities pose a challenge in our ability to understand oscillatory activities produced by cellular‐based computational network models. This challenge stems from their high‐dimensional and multiparametric natures. To overcome this, we implement a solution by linking minimal and detailed models of CA1 microcircuits that generate intrahippocampal (3–12 Hz) theta rhythms. We leverage insights from minimal models to guide explorations of more detailed models and obtain a cellular perspective of theta generation. Our findings distinguish the pyramidal cells as the theta rhythm initiators and reveal that their activity is regularized by the inhibitory cell populations, supporting a proposed hypothesis of an “inhibition‐based tuning” mechanism. We find a strong correlation between input current to the pyramidal cells and the resulting local field potential theta frequency, indicating that intrinsic pyramidal cell properties underpin network frequency characteristics. This work provides a cellular‐based foundation from which in vivo theta activities can be explored.
ISSN:1050-9631
1098-1063
DOI:10.1002/hipo.23364