Loading…

Characterization of a New Full-Thickness In Vitro Skin Model

Since 30 years, bioengineering allowed to reconstruct human tissues using normal human cells. Skin is one of the first organ to be reconstructed thanks to the development of specific cell culture media and supports favoring the culture of human skin cells, such as fibroblasts, keratinocytes, or mela...

Full description

Saved in:
Bibliographic Details
Published in:Tissue engineering. Part C, Methods Methods, 2021-07, Vol.27 (7), p.411-420
Main Authors: Plaza, Christelle, Meyrignac, Celine, Botto, Jean-Marie, Capallere, Christophe
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Since 30 years, bioengineering allowed to reconstruct human tissues using normal human cells. Skin is one of the first organ to be reconstructed thanks to the development of specific cell culture media and supports favoring the culture of human skin cells, such as fibroblasts, keratinocytes, or melanocytes. Skin models have evolved from epidermis to complex models including a dermis. The purpose of the present study was to design a reconstructed full-thickness (FT) skin suitable to perform in vitro testing of both molecules and plant extracts. First, we reconstructed epidermis with normal human keratinocytes displaying the expected multilayered morphology and expressing specific epidermal proteins (e-cadherin, claudin-1, p63, Ki67, Keratin 10, filaggrin, and loricrin). Then, a dermal equivalent was developed using a collagen matrix allowing the growth of fibroblasts. The functionality of the dermis was demonstrated by the measurement of skin parameters such as rigidity or elasticity with Ballistometer ® and other parameters such as the contraction over time and the expression of dermal proteins. The combination of these two compartments (dermis and epidermis) allowed to reconstruct an FT model. This study model allowed to study the communication between compartments and with the establishment of a dermoepidermal junction showing the expression of specific proteins (collagen XVII, laminin, and collagen IV).
ISSN:1937-3384
1937-3392
DOI:10.1089/ten.tec.2021.0035