Loading…

Poly(vinyl alcohol) Hydrogels with Integrated Toughness, Conductivity, and Freezing Tolerance Based on Ionic Liquid/Water Binary Solvent Systems

In recent years, ionic conductive hydrogels have shown great potential for application in flexible sensors, energy storage devices, and actuators. However, developing facile and effective methods for fabricating such hydrogels remains a great challenge, especially for hydrogels that retain their pro...

Full description

Saved in:
Bibliographic Details
Published in:ACS applied materials & interfaces 2021-06, Vol.13 (24), p.29008-29020
Main Authors: Liu, Yizhuo, Wang, Wenqi, Gu, Kai, Yao, Jinrong, Shao, Zhengzhong, Chen, Xin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In recent years, ionic conductive hydrogels have shown great potential for application in flexible sensors, energy storage devices, and actuators. However, developing facile and effective methods for fabricating such hydrogels remains a great challenge, especially for hydrogels that retain their properties in extreme environmental conditions, such as at subzero temperatures or storage in open-air conditions. Herein, a water-miscible ionic liquid (IL), such as 1-ethyl-3-methylimidazolium acetate (EMImAc), was introduced to form an IL/water binary solvent system for poly­(vinyl alcohol) (PVA) to create ionic conductive PVA hydrogels. The physically crosslinked PVA/EMImAc/H2O hydrogels showed better mechanical properties and transparency than the traditional PVA hydrogel prepared by the freeze–thaw method due to the formation of homogeneous and small PVA microcrystals in the EMImAc/H2O binary solvent system. More importantly, the PVA/EMImAc/H2O hydrogel exhibited significant anti-freezing and water-retaining properties because of the presence of the IL. The hydrogels remained flexible and conductive at temperatures as low as −50 °C and retained more than 90% of their weight after storage in open-air conditions for 2 weeks. In addition, the thermal stability of the hydrogel could be increased to 95 °C through the addition of Mg­(II) ions. A multimodal sensor based on the PVA/EMImAc/H2O/Mg­(II) hydrogel showed high sensitivity and a quick response to changes in pressure, strain, and temperature, with both long-term stability and a wide working temperature range. This study may open a new route for the fabrication of functional PVA-based hydrogel electrolytes and provide a practical pathway for their use in multifunctional electronic and sensory device applications.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.1c09006