Loading…

Simulations of micro-sphere/shell 2D silica photonic crystals for radiative cooling

Passive daytime radiative cooling has recently become an attractive approach to address the global energy demand associated with modern refrigeration technologies. One technique to increase the radiative cooling performance is to engineer the surface of a polar dielectric material to enhance its emi...

Full description

Saved in:
Bibliographic Details
Published in:Optics express 2021-05, Vol.29 (11), p.16857-16866
Main Authors: Whitworth, G. L., Jaramillo-Fernandez, J., Pariente, J. A., Garcia, P. D., Blanco, A., Lopez, C., Sotomayor-Torres, C. M.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Passive daytime radiative cooling has recently become an attractive approach to address the global energy demand associated with modern refrigeration technologies. One technique to increase the radiative cooling performance is to engineer the surface of a polar dielectric material to enhance its emittance at wavelengths in the atmospheric infrared transparency window (8–13 µm) by outcoupling surface-phonon polaritons (SPhPs) into free-space. Here we present a theoretical investigation of new surface morphologies based upon self-assembled silica photonic crystals (PCs) using an in-house built rigorous coupled-wave analysis (RCWA) code. Simulations predict that silica micro-sphere PCs can reach up to 73 K below ambient temperature, when solar absorption and conductive/convective losses can be neglected. Micro-shell structures are studied to explore the direct outcoupling of the SPhP, resulting in near-unity emittance between 8 and 10 µm. Additionally, the effect of material composition is explored by simulating soda-lime glass micro-shells, which, in turn, exhibit a temperature reduction of 61 K below ambient temperature. The RCWA code was compared to FTIR measurements of silica micro-spheres, self-assembled on microscope slides.
ISSN:1094-4087
1094-4087
DOI:10.1364/OE.420989