Loading…

Menstrual fluid endometrial stem/progenitor cell and supernatant protein content: cyclical variation and indicative range

Does natural variation exist in the endometrial stem/progenitor cell and protein composition of menstrual fluid across menstrual cycles in women? Limited variation exists in the percentage of some endometrial stem/progenitor cell types and abundance of selected proteins in menstrual fluid within and...

Full description

Saved in:
Bibliographic Details
Published in:Human reproduction (Oxford) 2021-07, Vol.36 (8), p.2215-2229
Main Authors: Wyatt, K A, Filby, C E, Davies-Tuck, M L, Suke, S G, Evans, J, Gargett, C E
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Does natural variation exist in the endometrial stem/progenitor cell and protein composition of menstrual fluid across menstrual cycles in women? Limited variation exists in the percentage of some endometrial stem/progenitor cell types and abundance of selected proteins in menstrual fluid within and between a cohort of women. Menstrual fluid is a readily available biofluid that can represent the endometrial environment, containing endometrial stem/progenitor cells and protein factors. It is unknown whether there is natural variation in the cellular and protein content across menstrual cycles of individual women, which has significant implications for the use of menstrual fluid in research and clinical applications. Menstrual fluid was collected from 11 non-pregnant females with regular menstrual cycles. Participants had not used hormonal medications in the previous 3 months. Participants collected menstrual fluid samples from up to five cycles using a silicone menstrual cup worn on Day 2 of menstrual bleeding. Menstrual fluid samples were centrifuged to separate soluble proteins and cells. Cells were depleted of red blood cells and CD45+ leucocytes. Menstrual fluid-derived endometrial stem/progenitor cells were characterized using multicolour flow cytometry including markers for endometrial stem/progenitor cells N-cadherin (NCAD) and stage-specific embryonic antigen-1 (SSEA-1) (for endometrial epithelial progenitor cells; eEPC), and sushi domain containing-2 (SUSD2) (for endometrial mesenchymal stem cells; eMSC). The clonogenicity of menstrual fluid-derived endometrial cells was assessed using colony forming unit assays. Menstrual fluid supernatant was analyzed using a custom magnetic Luminex assay. Endometrial stem/progenitor cells are shed in menstrual fluid and demonstrate clonogenic properties. The intraparticipant agreement for SUSD2+ menstrual fluid-derived eMSC (MF-eMSC), SSEA-1+ and NCAD+SSEA-1+ MF-eEPC, and stromal clonogenicity were moderate-good (intraclass correlation; ICC: 0.75, 0.56, 0.54 and 0.52, respectively), indicating limited variability across menstrual cycles. Endometrial inflammatory and repair proteins were detectable in menstrual fluid supernatant, with five of eight (63%) factors demonstrating moderate intraparticipant agreement (secretory leukocyte protein inhibitor (SLPI), lipocalin-2 (NGAL), lactoferrin, follistatin-like 1 (FSTL1), human epididymis protein-4 (HE4); ICC ranges: 0.57-0.69). Interparticipant variation was limited
ISSN:0268-1161
1460-2350
DOI:10.1093/humrep/deab156