Loading…
Diaryliodonium Salt-Based Synthesis of N‑Alkoxyindolines and Further Insights into the Ishikawa Indole Synthesis
A diaryliodonium salt-based strategy enabled the first systematic synthesis of rarely accessible N-alkoxyindolines. Mechanistic analyses suggested that the reaction likely involves reductive elimination of iodobenzene from iodaoxazepine via a four-membered transition state, followed by Meisenheimer...
Saved in:
Published in: | Journal of organic chemistry 2021-08, Vol.86 (15), p.10067-10087 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A diaryliodonium salt-based strategy enabled the first systematic synthesis of rarely accessible N-alkoxyindolines. Mechanistic analyses suggested that the reaction likely involves reductive elimination of iodobenzene from iodaoxazepine via a four-membered transition state, followed by Meisenheimer rearrangement. Substrates with N-carbamate protection afforded indole in a manner similar to that of the Ishikawa indole synthesis. Preinstallation of a stannyl group as an iodonium salt precursor greatly expanded the substrate scope, and further mechanistic insights are discussed. |
---|---|
ISSN: | 0022-3263 1520-6904 |
DOI: | 10.1021/acs.joc.1c00820 |