Loading…

Synchronization in populations of electrochemical bursting oscillators with chaotic slow dynamics

We investigate the synchronization of coupled electrochemical bursting oscillators using the electrodissolution of iron in sulfuric acid. The dynamics of a single oscillator consisted of slow chaotic oscillations interrupted by a burst of fast spiking, generating a multiple time-scale dynamical syst...

Full description

Saved in:
Bibliographic Details
Published in:Chaos (Woodbury, N.Y.) N.Y.), 2021-05, Vol.31 (5), p.053125-053125
Main Authors: Magrini, Luciano A., Oliveira Domingues, Margarete, Macau, Elbert E. N., Kiss, István Z.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We investigate the synchronization of coupled electrochemical bursting oscillators using the electrodissolution of iron in sulfuric acid. The dynamics of a single oscillator consisted of slow chaotic oscillations interrupted by a burst of fast spiking, generating a multiple time-scale dynamical system. A wavelet analysis first decomposed the time series data from each oscillator into a fast and a slow component, and the corresponding phases were also obtained. The phase synchronization of the fast and slow dynamics was analyzed as a function of electrical coupling imposed by an external coupling resistance. For two oscillators, a progressive transition was observed: With increasing coupling strength, first, the fast bursting intervals overlapped, which was followed by synchronization of the fast spiking, and finally, the slow chaotic oscillations synchronized. With a population of globally coupled 25 oscillators, the coupling eliminated the fast dynamics, and only the synchronization of the slow dynamics can be observed. The results demonstrated the complexities of synchronization with bursting oscillations that could be useful in other systems with multiple time-scale dynamics, in particular, in neuronal networks.
ISSN:1054-1500
1089-7682
DOI:10.1063/5.0041488