Loading…
High-speed serial deep learning through temporal optical neurons
Deep learning is able to functionally mimic the human brain and thus, it has attracted considerable recent interest. Optics-assisted deep learning is a promising approach to improve forward-propagation speed and reduce the power consumption of electronic-assisted techniques. However, present methods...
Saved in:
Published in: | Optics express 2021-06, Vol.29 (13), p.19392-19402 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Deep learning is able to functionally mimic the human brain and thus, it has attracted considerable recent interest. Optics-assisted deep learning is a promising approach to improve forward-propagation speed and reduce the power consumption of electronic-assisted techniques. However, present methods are based on a parallel processing approach that is inherently ineffective in dealing with the serial data signals at the core of information and communication technologies. Here, we propose and demonstrate a sequential optical deep learning concept that is specifically designed to directly process high-speed serial data. By utilizing ultra-short optical pulses as the information carriers, the neurons are distributed at different time slots in a serial pattern, and interconnected to each other through group delay dispersion. A 4-layer serial optical neural network (SONN) was constructed and trained for classification of both analog and digital signals with simulated accuracy rates of over 79.2% with proper individuality variance rates. Furthermore, we performed a proof-of-concept experiment of a pseudo-3-layer SONN to successfully recognize the ASCII codes of English letters at a data rate of 12 gigabits per second. This concept represents a novel one-dimensional realization of artificial neural networks, enabling a direct application of optical deep learning methods to the analysis and processing of serial data signals, while offering a new overall perspective for temporal signal processing. |
---|---|
ISSN: | 1094-4087 1094-4087 |
DOI: | 10.1364/OE.423670 |