Loading…

Stable Cycling of a 4 V Class Lithium Polymer Battery Enabled by In Situ Cross-Linked Ethylene Oxide/Propylene Oxide Copolymer Electrolytes with Controlled Molecular Structures

Commercial lithium-ion batteries are vulnerable to fire accidents, mainly due to volatile and flammable liquid electrolytes. Although solid polymer electrolytes (SPEs) are considered promising alternatives with antiflammability and processability for roll-to-roll mass production, several requirement...

Full description

Saved in:
Bibliographic Details
Published in:ACS applied materials & interfaces 2021-08, Vol.13 (30), p.35664-35676
Main Authors: Choi, Woonghee, Kang, Yongku, Kim, In-Jung, Seong, Byeong-Gi, Yu, Woong-Ryeol, Kim, Dong Wook
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Commercial lithium-ion batteries are vulnerable to fire accidents, mainly due to volatile and flammable liquid electrolytes. Although solid polymer electrolytes (SPEs) are considered promising alternatives with antiflammability and processability for roll-to-roll mass production, several requirements have not yet been fulfilled for a viable lithium polymer battery. Such requirements include ionic conductivity, electrochemical stability, and interfacial resistance. In this work, the ionic conductivity of the SPEs is optimized by controlling the molecular weight and structural morphology of the plasticizers as well as introducing propylene oxide (PO) groups. Electrochemical stability is also enhanced using ethylene oxide (EO)/PO copolymer electrolytes, making the SPEs compatible with high-Ni LiNi x Co y Mn1–x–y O2 cathodes. The in situ cross-linking method, in which a liquid precursor first wets the electrode and is then solidified by a subsequent thermal treatment, enables the SPEs to soak into the 60 μm thick electrode with a high loading density of more than 8 mg cm–2. Thus, interfacial resistance between the SPE and the electrode is minimized. By using the in situ cross-linked EO/PO copolymer electrolytes, we successfully demonstrate a 4 V class lithium polymer battery, which performs stable cycling with a marginal capacity fading even over 100 cycles.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.1c07734