Loading…

Extension of Euler's theorem to n-dimensional spaces

Euler's theorem states that any sequence of finite rotations of a rigid body can be described as a single rotation of the body about a fixed axis in three-dimensional Euclidean space. The usual statement of the theorem in the literature cannot be extended to Euclidean spaces of other dimensions...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on aerospace and electronic systems 1989-11, Vol.25 (6), p.903-909
Main Author: Bar-Itzhack, I.Y.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Euler's theorem states that any sequence of finite rotations of a rigid body can be described as a single rotation of the body about a fixed axis in three-dimensional Euclidean space. The usual statement of the theorem in the literature cannot be extended to Euclidean spaces of other dimensions. Equivalent formulations of the theorem are given and proved in a way which does not limit them to the three-dimensional Euclidean space. Thus, the equivalent theorems hold in other dimensions. The proof of one formulation presents an algorithm which shows how to compute an angular-difference matrix that represents a single rotation which is equivalent to the sequence of rotations that have generated the final n-D orientation. This algorithm results also in a constant angular velocity which, when applied to the initial orientation, eventually yields the final orientation regardless of what angular velocity generated the latter. The extension of the theorem is demonstrated in a four-dimensional numerical example. The issue of the correct n-D representation of angular velocity is discussed.< >
ISSN:0018-9251
1557-9603
DOI:10.1109/7.40731